CHINESE CABBAGE BrMYB34.2 TRANSCRIPTION FACTOR REGULATES INDOLIC GLUCOSINOLATES BIOSYNTHESIS IN Arabidopsis

Ye Zhao

College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China

Yongqiang Zhang

College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China

Xianfeng Guo

College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China

Yan Ma

College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China

Peng Zhang

Mountain Tai Scenic Area Management Committee, Taian, Shandong 271018, China

Hongling Liu

Mountain Tai Scenic Area Management Committee, Taian, Shandong 271018, China

Gang Liu

Mountain Tai Scenic Area Management Committee, Taian, Shandong 271018, China

Jing Guo

College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China


Abstract

Glucosinolates (GS) are a group of sulfur- and nitrogen-rich plant secondary metabolites that originate from
amino acids and exist mainly in plants in the order Brassicales, such as Arabidopsis thaliana (Arabidopsis) and Chinese cabbage (Brassica rapa ssp. pekinensis). To date, several regulatory components responsible for GS biosynthesis have been identified in Arabidopsis. However, the functions of GS biosynthesis regulators in Chinese cabbage have not been clarified. In our current study, a putative ATR1/MYB34 orthologous gene, BrMYB34.2, was isolated from Chinese cabbage leaves. To investigate the function of this gene, we engineered Arabidopsis plants that overexpress BrMYB34.2 ectopically and phenotypic analysis was performed. Moreover, we assayed the accumulation levels of indolic GS (IGS) and aliphatic glucosinolates in transgenic plants and test the expression of key genes of IGS biosynthesis and tryptophan synthesis by Real-time quantitative PCR. And further analysed the resistance of transgenic plants in 5MT stress treatment. The results indicate that ectopic expression of the BrMYB34.2 gene in Arabidopsis was able to up-regulate the accumulation level of IGS due to the increased expression of IGS and Trp biosynthetic genes. Moreover, overexpression of BrMYB34.2 conferred Arabidopsis 5MT resistance. These results suggest that the BrMYB34.2 gene may function as one of the regulators of IGS and Trp biosynthesis in Chinese cabbage.

Keywords:

BrMYB34.2, indolic glucosinolate, tryptophan, Chinese cabbage

Baskar, V., Park, S.W. (2015). Molecular characterization of BrMYB28 and BrMYB29 paralogous transcription factors involved in the regulation of aliphatic glucosinolate profiles in Brassica rapa ssp. Pekinensis. C.R., Biol., 338, 434–442. DOI: 10.1016/j.crvi.2015.04.001

Bechtold, N., Ellis, J., Pelletier, G. (1993). In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Séances Acad. Sci., Sér. 3, Sci. Vie/ Life Sci., 316, 1194–1199.

Bender, J., Fink, G.R. (1998). A Myb homologue, ATR1, activates tryptophan gene expression in Arabidopsis. Proc. Nati. Acad. Sci. U. S. Am., 95, 5655–5660. DOI: 10.1073/pnas.95.10.5655

Celenza, J.L., Quiel, J.A., Smolen, G.A., Merrikh, H., Silvestro, A.R., Normanly, J., Bender, J. (2005). The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol., 137, 253–262. DOI: 10.1104/pp.104.054395

Gigolashvili, T., Berger, B., Flügge, U.I. (2009). Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3-MYB transcription factors in Arabidopsis thaliana. Phytochem. Rev., 8, 3–13. DOI: 10.1007/s11101-008-9112-6

Gigolashvili, T., Berger, B., Mock, H.P., Müller, C., Weisshaar, B., Flügge, U.I. (2007). The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J., 50, 886–901. DOI: 10.1111/j.1365-313X.2007.03099.x

Gigolashvili, T., Engqvist, M., Yatusevich, R., Müller, C., Flügge, U.I. (2008). HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol., 177, 627–642. DOI: 10.1111/j.1469-8137.2007.02295.x

Gigolashvili, T., Yatusevich, R., Berger, B., Müller, C., Flügge, U.I. (2007). The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J., 51, 247–261. DOI: 10.1111/j.1365-313X.2007.03133.x

Grubb, C.D., Abel, S. (2006). Glucosinolate metabolism and its control. Trends Plant Sci., 11, 89–100. DOI: 10.1016/j.tplants.2005.12.006

Hemm, M.R., Ruegger, M.O., Chapple, C. (2003). The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell, 15, 179–194. DOI: 10.1105/tpc.006544

Justen, V.L., Fritz, V.A. (2013). Temperature-induced glucosinolate accumulation is associated with expression of BrMYB transcription factors. Hortscience, 48(1), 47–52. DOI: 10.21273/HORTSCI.48.1.47

Levy, M., Wang, Q.M., Kaspi, R., Parrella, M.P., Abel, S. (2005). Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant J., 43(1), 79–96. DOI: 10.1111/j.1365-313X.2005.02435.x

Martinez-Ballesta, M.C., Moreno, D.A., Carvajal, M. (2013). The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int. J. Mol. Sci., 14(6), 11607–11625. DOI: 10.3390/ijms140611607

Maruyama-Nakashita, A., Nakamura, Y., Saito, K., Takahashi, H. (2007). Identification of a novel cis-acting element in SULTR1;2 promoter conferring sulfur deficiency response in Arabidopsis roots. Plant J., 42(3), 305–314. DOI: 10.1111/j.1365-313X.2005.02363.x

Mun, J.H. et al. (2010). Sequence and structure of Brassica rapa chromosome A3. Genome Biol., 11, R94. DOI: 10.1186/gb-2010-11-9-r94

Niyogi, K.K. (1993). Molecular and genetic analysis of anthranilate synthase in Arabidopsis thaliana. PhD Dissertation. Massachusetts Institute of Technology, Cambridge.

Padilla, G., Cartea, M.E., Velasco, P. (2007). Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry, 6, 536–545. DOI: 10.1016/j.phytochem.2006.11.017

Pruitt, K.D., Last, R.L. (1993). Expression patterns of duplicate tryptophan synthase β genes in Arabidopsis thaliana. Plant Physiol., 102, 1019–1026. DOI: 10.1104/pp.102.3.1019

Schonhof, I., Krumbein, A., Brückner, B. (2004). Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. Mol. Nutr. Food Res., 48(1), 25–33. DOI: 10.1002/food.200300329

Seo, M.S., Jin, M., Chun, J.H., Kim, S.J., Park, B.S., Shon, S.H., Kim, J.S. (2016). Functional analysis of three BrMYB28 transcription factors controlling the biosynthesis of glucosinolates in Brassica rapa. Plant Mol. Biol., 90, 503–516. DOI: 10.1007/s11103-016-0437-z

Seo, M.S., Jin, M., Sohn, S.H., Kim, J.S. (2017). Expression profiles of BrMYB transcription factors related to glucosinolate biosynthesis and stress response in eight subspecies of Brassica rapa. FEBS Open Bio, 7(11), 1646–1659. DOI: 10.1002/2211-5463.12231

Skirycz, A., Reichelt, M., Burow, M., Birkemeyer, C., Rolcik, J., Kopka, J., Zanor, M.I., Gershenzon, J., Strnad, M., Szopa, J., Mueller-Roeber, B., Witt, I. (2006). DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant J., 47, 10–24. DOI: 10.1111/j.1365-313X.2006.02767.x

Smolen, G., Bender, J. (2002). Arabidopsis cytochrome P450 cyp83B1 mutations activate the tryptophan biosynthetic pathway. Genetics, 160, 323–332.

Sønderby, I.E., Geuflores, F., Halkier, B.A. (2010). Biosynthesis of glucosinolates – gene discovery and beyond. Trends Plant Sci., 15, 283–290. DOI: 10.1016/j.tplants.2010.02.005

Textor, S., Kraker, J.W., Hause, B., Gershenzon, J., Tokuhisa, J.G. (2007). MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis. Plant Physiol., 144, 60–71. DOI: 10.1104/pp.106.091579

Traka, M., Mithen, R. (2009). Glucosinolates, isothiocyanates and human health. Phytochem. Rev., 8, 269–282. DOI: 10.1007/s11101-008-9103-7

Wang, X. et al. (2011). The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet., 43, 1035–1157. DOI: 10.1038/ng.919

Wang, Z., Tang, J., Hu, R., Wu, P., Hou, X.L., Song X.M., Xiong, A.S. (2015). Genome-wide analysis of the R2R3-MYB transcription factor genes in Chinese cabbage (Brassica rapa ssp. pekinensis) reveals their stress and hormone responsive patterns. BMC Genomics, 16, 17. DOI: 10.1186/s12864-015-1216-y

Yan, X., Chen, S. (2007). Regulation of plant glucosinolate metabolism. Planta, 226, 1343–1352. DOI: 10.1007/s00425-007-0627-7

Zang, Y.X., Kim, H.U., Kim, J.A., Lim, M.H., Jin, M., Lee, S.C., Kwon, S.J., Lee, S.I., Hong, J.K., Park, T.H., Mun, J.H., Seol, Y.J., Hong, S.B., Park, B.S. (2009). Genome-wide identification of glucosinolate synthesis genes in Brassica rapa. FEBS J., 276, 3559–3574. DOI: 10.1111/j.1742-4658.2009.07076.x

Download

Published
2020-02-21



Ye Zhao 
College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China
Yongqiang Zhang 
College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China
Xianfeng Guo 
College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China
Yan Ma 
College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China
Peng Zhang 
Mountain Tai Scenic Area Management Committee, Taian, Shandong 271018, China
Hongling Liu 
Mountain Tai Scenic Area Management Committee, Taian, Shandong 271018, China
Gang Liu 
Mountain Tai Scenic Area Management Committee, Taian, Shandong 271018, China
Jing Guo 
College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.