Effects of Azotobacter spp., mycorrhizal fungi and shade treatments on plant growth and chlorophyll content in boxwoods plants

Ömer Sarı

Black Sea Agricultural Research Institute, Samsun, Turkey
https://orcid.org/0000-0001-9120-2182


Abstrakt

In this study, two important commercial species, Buxus microphilla and B. herlandii, were evaluated. People do not want polluting and toxic fertilizers used to cultivate the plants they use for nutrition, and they do not want the plants they use as ornamental plants. The study investigated the effects of mycorrhizal and bacterial applications on plant growth and chlorophyll content. As a result of the study, it was concluded that bacterial applications on the development of boxwoods are more effective than mycorrhizal applications. Shading further increased the effect of the applications. In B. microphilla, in a 70% shade, plant height increased by 18.5% with mycorrhizal application, and plant width increased by 29.7% with bacterial application. In B. herlandii, bacterial application increased plant height by 13.3% and plant width by 20.4%. In shadowless application, the amount of chlorophyll in B. herlandii leaves was found to increase by 47.20% with bacteria and in B. microphilla, it increased by 65.86. In shadow application in B. herlandii, leaves were found to increase by 76.70% with bacteria; in B. microphilla, it increased by 94.93%. It was concluded that the bacteria application is more effective than others because Azotobacters fix the free nitrogen in the air to the boxwood soil, which needs continuous nitrogen for growth and development. For this reason, N-fixing bacteria applications to the soil can be used as an alternative to chemical fertilizer applications in boxwood cultivation or hedge formation.

Słowa kluczowe:

Buxus microphilla, Buxus herlandii, biofertilizer, mycorrhiza, bacteria

Abkenar, K.T., Abdinejad, B. (2011). Evaluation of light effect on quantitative and qualitative characteristics of caspian box tree (Buxus sempervirens) in reserve zone (Dorostkar Forest). Iran. J. Ecol. Environ. Sci., 2(2), 41–45.

Alkaç, O.S., Belgüzar, S., Öndeş, E., Okatar, F., Kayaaslan, Z. (2022). Farklı kök bakterisi ve mikoriza uygulamalarının ıldız çiçeği (Dahlia variabilis) fidelerinin büyüme ve gelişimine etkileri [The effects of different rhizobacteria and mycorrhiza applications on seedling growth and development of starflower (Dahlia variabilis)]. MKU J. Agric. Fac., 27(2), 331–339. https://doi.org/10.37908/mkutbd.1092636 DOI: https://doi.org/10.37908/mkutbd.1092636

Asif, M., Lone, S., Lone, F.A., Hamid, A. (2013). Field performance of blue pine (Pinus wallichiana) seedlings inoculated with selected species of bio-inoculants under nursery conditions. Int. J. Pharma Bio Sci., 4(1), B632–B640.

Bulgari, R., Cocetta, G., Trivellini, A., Vernieri, P., Ferrante, A. (2015). Biostimulants and crop responses: a review. Biol. Agric. Hortic., 31(1), 1–17. http://dx.doi.org/10.1080/01448765.2014.964649 DOI: https://doi.org/10.1080/01448765.2014.964649

Cavins, T.J, Dole, J.M. (2002). Precooling, planting depth, and shade affect cut flower quality and perennialization of field-grown spring bulbs. Hort. Sci., 37(1), 79–83. https://doi.org/10.21273/HORTSCI.37.1.79 DOI: https://doi.org/10.21273/HORTSCI.37.1.79

Clark, M.J, Zheng, Y. (2015). Species-specific fertilization can benefit container nursery crop production. Can. J. Plant Sci., 95(2), 251–262. https://doi.org/10.4141/cjps-2014-340 DOI: https://doi.org/10.4141/cjps-2014-340

Cooke, J.E., Martin, T.A., Davis, J.M. (2005). Short-term physiological and developmental responses to nitrogen availability in hybrid poplar. New Phytol., 167(1), 41–52. https://doi.org/10.1111/j.1469-8137.2005.01435.x DOI: https://doi.org/10.1111/j.1469-8137.2005.01435.x

Demir, S., Onoğur, E. (1999). Glomus intraradices Schenck & Smith: a hopeful vesicular-arbuscular mycorrhizal (VAM) fungus determined in soils of Turkey. J. Turk. Phytopathol. 28(1/2), 33–34.

Dutt, S., Sharma, S.D., Kumar, P. (2013). Inoculation of apricot seedlings with indigenous arbuscular mycorrhizal fungi in optimum phosphorus fertilization for quality growth attributes. J. Plant. Nutr., 36(1), 15–31. https://doi.org/10.1080/01904167.2012.732648 DOI: https://doi.org/10.1080/01904167.2012.732648

Gökçe, A.Y., Kotan, R. (2016). Buğday kök çürüklüğüne neden olan Bipolaris sorokiniana (Sacc.)’ya karşı PGPR ve biyoajan bakterileri kullanılarak kontrollü koşullarda biyolojik mücadele imkanlarının araştırılması [Investigation of biological control possibilities of wheat root rot disease caused by Bipolaris sorokiniana (Sacc.) using PGPR and bio-control bacteria in controlled condition]. Bitki Koruma Bülteni, 56(1), 49–75.

Hijri, M., Bâ, A. (2018). Mycorrhiza in tropical and neotropical ecosystems. Front. Plant Sci., 9, 308. https://doi.org/10.3389/fpls.2018.00308 DOI: https://doi.org/10.3389/fpls.2018.00308

Kashyap, A.S., Pandey, V.K., Manzar, N., Kannojia, P., Singh, U.B., Sharma, P.K. (2017). Role of plant growth -promoting rhizobacteria for improving crop productivity in sustainable agriculture. In: Singh, D., Singh, H., Prabha, R. (eds). Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore, 673–693. https://doi.org/10.1007/978-981-10-6593-4_28 DOI: https://doi.org/10.1007/978-981-10-6593-4_28

Köhler, E. (2014). Buxaceae. In: Greuter, W., Rankin Rodríguez, R. (eds). Flora de la República de Cuba, Ser. A, Plantas vasculares, Fasc. 19.

Lakshminarayana, K. (1993). Influence of Azotobacter on nitrogen nutrition of plants and crop productivity. Proc. Indian. Natl. Sci. Acad. 59(3), 303–308.

Li, Y., Fang, F., Wei, J., Wu, X., Cui, R., Li, G., Tan, D. (2019). Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: a three-year experiment. Sci. Rep., 9(1), 1–9. https://doi.org/10.1038/s41598-019-48620-4 DOI: https://doi.org/10.1038/s41598-019-48620-4

Mrkovački, N., Mezei, S., Verešbaranji, I., Popović, M., Sarić, Z., Kovačev, L. (1997). Associations of sugar beet and nitrogen-fixing bacteria in vitro. Biol. Plant., 39(3), 419–425. https://doi.org/10.1023/A:1001088412321 DOI: https://doi.org/10.1023/A:1001088412321

Niemiera, A.X. (2018). Selecting landscape plants: Boxwoods. https://vtechworks.lib.vt.edu/bitstream/handle/10919/84266/HORT-290.pdf [date of access: 25.01.2023].

Owen, D., Williams, AP., Griffith, GW., Withers, P.J.A. (2015). Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Appl. Soil Ecol., 86, 41–54. https://doi.org/10.1016/j.apsoil.2014.09.012 DOI: https://doi.org/10.1016/j.apsoil.2014.09.012

Özgün, O. (2020). Mikrobiyal gübrelerin orman fidanlarının fidan karakteristiklerine etkilerinin belirlenmesi. Master’s thesis, Bursa Teknik Üniversitesi. [In Turkisch].

Razaq, M., Zhang, P., Shen, H.L. (2017). Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. Plos One, 12(2), e0171321. https://doi.org/10.1371/journal.pone.0171321 DOI: https://doi.org/10.1371/journal.pone.0171321

Reedy, P.P. (2014). Plant growth promoting rhizobacteria for horticultural crop protection, Springer, New Delhi, Heidelberg, New York, Dordrecht, London, pp. 313. https://doi.org/10.1007/978-81-322-1973-6 DOI: https://doi.org/10.1007/978-81-322-1973-6

Sarı, Ö., Çelikel, F.G. (2019). Turkey’s Boxwoods (Buxus sempervirens and Buxus balearica) and current threats. I International Ornamental Plants Congress, VII Süs Bitkileri Kongresi, 9–11.10.2019, Bursa, 383–393.

Siddiqui, Z.A. (2006). PGPR: Prospective biocontrol agents of plant pathogens. In: Siddiqui, Z.A. (eds), PGPR: Biocontrol and biofertilization, 111–142. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4152-7_4 DOI: https://doi.org/10.1007/1-4020-4152-7_4

Srivastava, L.M. (2002). Plant growth and development: hormones and environment. Elsevier.

Sun, X., Shi, J., Ding, G. (2017). Combined effects of arbuscular mycorrhiza and drought stress on plant growth and mortality of forage sorghum. Appl. Soil Ecol., 119, 384–391. https://doi.org/10.1016/j.apsoil.2017.07.030 DOI: https://doi.org/10.1016/j.apsoil.2017.07.030

USDA-NASS, (2020). Census of horticultural specialties-2020. https://www.nass.usda.gov/Publications/AgCensus/2017/Online_Resources/Census_of_Horticulture_Specialties/hortic_1_0018_0019.pdf [date of access: 14.06.2024].

Verma, S., Singh, A., Pradhan, S.S., Singh, J.P., Verma, S.K. (2018). Effects of organic formulations and synthetic fertilizer on the performance of pigeonpea in eastern region of Uttar Pradesh. Bangladesh J. Bot., 47(3), 467–471. https://doi.org/10.3329/bjb.v47i3.38713 DOI: https://doi.org/10.3329/bjb.v47i3.38713

Verma, S.K., Sahu, P.K., Kumar, K., Pal, G., Gond, S.K., Kharwar, R.N., White, J.F. (2021). Endophyte roles in nutrient acquisition, root system architecture development and oxidative stress tolerance. J. Appl. Microbiol., 131(5), 2161–2177. https://doi.org/10.1111/jam.15111 DOI: https://doi.org/10.1111/jam.15111

Waraich, E.A., Ahmad, Z., Ahmad, R., Saifullah, R., Ashraf, M.Y. (2015). Foliar applied phosphorous enhanced growth, chlorophyll contents, gas exchange attributes and PUE in wheat (Triticum aestivum L.). J. Plant Nutr., 38(12), 1929–1943. https://doi.org/10.1080/01904167.2015.1043377 DOI: https://doi.org/10.1080/01904167.2015.1043377

Xu, X., He, P., Yang, F., Ma, J., Pampolino, M.F., Johnston, A.M., Zhou, W. (2017). Methodology of fertilizer recommendation based on yield response and agronomic efficiency for rice in China. Field Crops Res., 206, 33–42. https://doi.org/10.1016/j.fcr.2017.02.011 DOI: https://doi.org/10.1016/j.fcr.2017.02.011

Yeh, C.-M., Chung, K., Liang, C.-K., Tsai, W.-C.(2021). Current understandings on the symbiotic relationship between orchid and fungus. In: Orchid Biotechnology IV, 407–434. https://doi.org/10.1142/9789811217777_0020 DOI: https://doi.org/10.1142/9789811217777_0020

Yılmaz, H., Demircan, V., Gul, M. (2009). Determining farmers’ information sources in chemical fertilizer use and their evaluation in terms of agricultural extension. Ziraat Fakultesi Dergisi – Suleyman Demirel Iniversitesi, 4(1), 31–44.

Younis, A., Anjum, S., Riaz, A., Hameed, M., Tariq, U., Ahsan, M. (2014). Production of quality dahlia (Dahlia variabilis cv. Redskin) flowers by efficient nutrients management running title: plant nutrition impacts on dahlia quality. Am. Eurasian J. Agric. Environ. Sci, 14(2), 137–142. https://doi.org/10.5829/idosi.aejaes.2014.14.02.12267

Yuan, H., Ge, T., Zhou, P., Liu, S., Roberts, P., Zhu, H., Wu. J. (2013). Soil microbial biomass and bacterial and fungal community structures responses to long-term fertilization in paddy soils. J. Soils Sediments, 13, 877–886. https://doi.org/10.1007/s11368-013-0664-8 DOI: https://doi.org/10.1007/s11368-013-0664-8


Opublikowane
2024-06-28



Ömer Sarı 
Black Sea Agricultural Research Institute, Samsun, Turkey https://orcid.org/0000-0001-9120-2182



Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.

Artykuły są udostępniane na zasadach CC BY 4.0 (do 2021 r. na zasadach CC BY-NC-ND 4.0 międzynarodowe).
Przysłanie artykułu do redakcji oznacza, że nie był on opublikowany wcześniej i nie jest rozpatrywany do publikacji gdzie indziej.

Autor podpisuje oświadczenie o oryginalności dzieła, wkładzie poszczególnych osób i źródle finansowania.