Abstract
Plant infestations cause significant economic losses in agriculture, necessitating rapid and accurate detection for optimized agrotechnical operations and reduced environmental pollution. This study addresses this challenge by proposing a customized convolutional neural network (CNN) architecture for detecting corn leaf worm infestations in maize. The research focuses on developing unique CNN models through extensive experimentation, systematically adjusting hyperparameters like optimizers, filter numbers, and kernel sizes. The study’s main contributions include the design of an accurate CNN classifier, and its implementation in a user-friendly smartphone application. The research highlights the importance of hyperparameter tuning in CNN performance, demonstrating that optimal configurations lead to high accuracy (up to 95% for accuracy, precision, recall, specificity, and
F1-score). While the current model focuses on a single pest, the findings underscore the potential of custom CNN classifiers in vision systems for automated crop inspection, offering a promising solution for minimizing crop losses and the environmental impact of chemical plant protection products.
References
- REFERENCES
- Acharya R., 2020. Corn Leaf Infection Dataset, https://www.kaggle.com/datasets/qramkrishna/ corn-leaf-infection-dataset [access: 04.15.2023].
- Babendreier D., Toepfer S., Bateman M. et al., 2022. Potential management options for the invasive moth spodoptera frugiperda in Europe. J. Econ. Entomol. 115(6), 1772–1782. https://doi.org/ 10.1093/JEE/TOAC089
- Baldi P., Brunak S., Chauvin Y. et al., 2000. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16(5), 412–424. https://doi.org/10.1093/ BIOIN-FORMATICS/16.5.412
- Barbedo J.G.A., 2018. Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification. Comput. Electron. Agric. 153, 46–53. https://doi.org/10.1016/J.COMPAG.2018.08.013
- Berka A., Hafiane A., Es-Saady Y. et al., 2023. CactiViT: Image-based smartphone application and transformer network for diagnosis of cactus cochineal. Artif. Intell. Agric. 9, 12–21. https://doi.org/10.1016/J.AIIA.2023.07.002
- Chicco D., Jurman G., 2020. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21(1), 1–13. https://doi.org/10.1186/s12864-019-6413-7
- Coviello L., Cristoforetti M., Jurman G. et al., 2020. GBCNet: In-field grape berries counting for yield estimation by dilated CNNs. Appl. Sci. 10(14), 4870. https://doi.org/10.3390/ APP10144870
- Duan K., Keerthi S.S., Chu W. et al., 2003. Multi-category classification by soft-max combination of binary classifiers. In: T. Windeatt, F. Roli (eds), Multiple classifier systems. MCS 2003. Springer–Berlin–Heidelberg. https://doi.org/10.1007/3-540-44938-8_13
- Ebrahimi M.A., Khoshtaghaza M.H., Minaei S. et al., 2017. Vision-based pest detection based on SVM classification method. Comput. Electron. Agric. 137, 52–58. https://doi.org/10.1016/ J.COMPAG.2017.03.016
- FAOSTAT, 2024. https://www.fao.org/faostat/en/#data/QV [access: 23.10.2024].
- Ferentinos K.P., 2018. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311–318. https://doi.org/10.1016/J.COMPAG.2018.01.009
- Gao J., French A.P., Pound M.P. et al., 2020. Deep convolutional neural networks for image-based Convolvulus sepium detection in sugar beet fields. Plant Methods 16(1), 1–12. https://doi.org/ 10.1186/s13007-020-00570-z
- Gill H.S., Khalaf O.I., Alotaibi Y. et al., 2022. Multi-model CNN-RNN-LSTM based fruit recogni-tion and classification. Intell. Autom. Soft Comput. 33(1), 637–650. https://doi.org/10.32604/ IASC.2022.022589
- Hasan A.S.M.M., Sohel F., Diepeveen D. et al., 2021. A survey of deep learning techniques for weed detection from images. Comput. Electron. Agric. 184, 106067. https://doi.org/10.1016/ J.COMPAG.2021.106067
- Hughes D.P., Salathe M., 2015. An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv, 1511.08060. https://doi.org/10.48550/ arXiv.1511.08060
- Jeger M., Bragard C., Caffier D. et al., 2018. Pest risk assessment of Spodoptera frugiperda for the European Union. EFSA J. 16(8). https://doi.org/10.2903/J.EFSA.2018.5351
- Jia W., Tian Y., Luo R. et al., 2020. Detection and segmentation of overlapped fruits based on opti-mized mask R-CNN application in apple harvesting robot. Comput. Electron. Agric. 172, 105380. https://doi.org/10.1016/J.COMPAG.2020.105380
- Jiao L., Dong S., Zhang S. et al., 2020. AF-RCNN: An anchor-free convolutional neural network for multi-categories agricultural pest detection. Comput. Electron. Agric. 174, 105522. https://doi.org/10.1016/J.COMPAG.2020.105522
- Kamarudin M.H., Ismail Z.H., Saidi N.B., 2021. Deep learning sensor fusion in plant water stress assessment: a comprehensive review. Appl. Sci. 11(4), 1403. https://doi.org/10.3390/ APP11041403
- Khan S., Tufail M., Khan M.T. et al., 2021. Deep-learning-based spraying area recognition system for unmanned-aerial-vehicle-based sprayers. Turk. J. Elec. Eng. Comp. Sci. 29(1), 241–256. https://doi.org/10.3906/elk-2004-4
- Khanramaki M., Askari Asli-Ardeh E., Kozegar E., 2021. Citrus pests classification using an en-semble of deep learning models. Comput. Electron. Agric. 186, 106192. https://doi.org/ 10.1016/J.COMPAG.2021.106192
- Kussul N., Lavreniuk M., Skakun S. et al., 2017. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 14(5), 778–782. https://doi.org/10.1109/LGRS.2017.2681128
- Lanjewar M.G., Panchbhai K.G., 2023. Convolutional neural network based tea leaf disease predic-tion system on smart phone using paas cloud. Neural Comput. App. 35(3), 2755–2771. https://doi.org/10.1007/S00521-022-07743-y
- Lanjewar M.G., Parab J.S., 2024. CNN and transfer learning methods with augmentation for citrus leaf diseases detection using PaaS cloud on mobile. Multimed. Tools App. 83(11), 31733–31758. https://doi.org/10.1007/S11042-023-16886-6
- Li Y., Wang H., Dang L.M. et al., 2020. Crop pest recognition in natural scenes using convolutional neural networks. Comput. Electron. Agric. 169, 105174. https://doi.org/10.1016/J.COMPAG.2019.105174
- Loyani L., Machuve D., 2021. A deep learning-based mobile application for segmenting tuta absolu-ta’s damage on tomato plants. Eng. Technol. Appl. Sci. Res. 11(5), 7730–7737. https://doi.org/10.48084/ETASR.4355
- Mallick M.T., Biswas S., Das A.K. et al., 2023. Deep learning based automated disease detection and pest classification in Indian mung bean. Multimed. Tools App. 82(8), 12017–12041. https://doi.org/10.1007/S11042-022-13673-7
- Mohan K.J., Balasubramanian M., Palanivel S., 2016. Detection and recognition of diseases from paddy plant leaf images. Int. J. Comput. App. 144(12), 975–8887.
- Mohanty S.P., Hughes D.P., Salathé M., 2016. Using deep learning for image-based plant disease detection. Front. Plant Sci. 7, 215232. https://doi.org/10.3389/FPLS.2016.01419
- Bosco de Oliveira A. (ed.), 2019. Abiotic and biotic stress in plants. IntechOpen. https://doi.org/10.5772/intechopen.77845
- Peyal H.I., Nahiduzzaman M., Pramanik M.A.H. et al., 2023. Plant disease classifier: detection of dual-crop diseases using lightweight 2D CNN architecture. IEEE Access 11, 110627–110643. https://doi.org/10.1109/ACCESS.2023.3320686
- Qureshi S.H., Khan D.M., Razzaq A. et al., 2024. Comparison of conventional and computer-based detection of severity scales of stalk rot disease in maize. Sabrao J. Breed. Genet. 56(1), 292–301. https://doi.org/10.54910/SABRAO2024.56.1.26
- Srivastava A.K., Safaei N., Khaki S. et al., 2022. Winter wheat yield prediction using convolutional neural networks from environmental and phenological data. Sci. Rep. 12(1), 1–14. https://doi.org/10.1038/s41598-022-06249-w
- Storey G., Meng Q., Li B., 2022. Leaf disease segmentation and detection in apple orchards for precise smart spraying in sustainable agriculture. Sustainability 14(3), 1458. https://doi.org/ 10.3390/SU14031458
- Thenmozhi K., Srinivasulu Reddy U., 2019. Crop pest classification based on deep convolutional neural network and transfer learning. Comput. Electron. Agric. 164, 104906. https://doi.org/ 10.1016/J.COMPAG.2019.104906
- van den Berg J., Britz C., du Plessis H., 2021. Maize Yield response to chemical control of Spodop-tera frugiperda at different plant growth stages in South Africa. Agriculture 11(9), 826. https://doi.org/10.3390/AGRICULTURE11090826
- Vujovic Z., 2021. Classification model evaluation metrics. Int. J. Adv. Comput. Sci. Appl. 12(6). https://doi.org/10.14569/IJACSA.2021.0120670
- Wang J., Li Y., Feng H. et al., 2020. Common pests image recognition based on deep convolutional neural network. Comput. Electron. Agric. 179, 105834. https://doi.org/10.1016/J.COMPAG.2020.105834
- Xu W., Sun L., Zhen C. et al., 2022. Deep learning-based image recognition of agricultural pests. Appl. Sci. 12(24), 12896. https://doi.org/10.3390/APP122412896
- Yang C., Teng Z., Dong C. et al., 2022. In-field citrus disease classification via convolutional neural network from smartphone images. Agriculture 12(9), 1487. https://doi.org/10.3390/ AGRI-CULTURE12091487
Downloads
Download data is not yet available.
-
CEZARY A. KWIATKOWSKI,
MARIAN WESOŁOWSKI,
MAGDA DRABOWICZ,
BARBARA MISZTAL-MAJEWSKA,
Wpływ adiuwantów oraz zredukowanych dawek środków ochrony roślin na występowanie agrofagów i produkcyjność pszenicy ozimej
,
Agronomy Science: Vol. 67 No. 3 (2012)
-
BARBARA SKIBOWSKA,
KAMILLA KUŻDOWICZ,
KATARZYNA FRANKE,
MAŁGORZATA MALICKA,
Search for genotypes resistant to Cercospora (Cercospora beticola Sacc.) in multigerm breeding materials of sugar beet
,
Agronomy Science: Vol. 73 No. 4 (2018)
-
MARTA PUCHTA,
PAULINA BOLC,
URSZULA PIECHOTA,
Review of genome sampling methods in sequencing libraries preparation protocols
,
Agronomy Science: Vol. 73 No. 4 (2018)
-
Jerzy Księżak,
Jan Kuś,
Faba bean yielding in varying systems of plant production
,
Agronomy Science: Vol. 60 (2005)
-
Viktor Kaminskyi,
Dmytro Sokyrko,
Volodymyr Hanhur,
Liudmyla Yeremko,
Formation of the leaf surface and productivity of the chickling vetch (Lathyrus sativus L.) depending on the amounts of mineral fertilizers and pre-sowing inoculation of seeds
,
Agronomy Science: Vol. 76 No. 2 (2021)
-
GRZEGORZ KLOC,
DENISE DOSTATNY,
TOMASZ SEKUTOWSKI,
WIESŁAW PODYMA,
The role of collection missions in gathering plant genetic resources material
,
Agronomy Science: Vol. 73 No. 4 (2018)
-
GRIGORIY DEMYDAS,
MAXIM ZAKHLEBAEV,
IVAN SHUVAR,
HALINA LIPIŃSKA,
TERESA WYŁUPEK,
The formation of the leaf surface of white melilot (Melilotus albus) depending on fertilization, seed mix and seeding rate
,
Agronomy Science: Vol. 75 No. 4 (2020)
-
AGNIESZKA JAMIOŁKOWSKA,
MAREK KOPACKI,
Economic effectiveness of chemical protection of chrysanthemums (Chrysanthemum sp.) in the plastic tunnel
,
Agronomy Science: Vol. 71 No. 2 (2016)
-
Piotr Kraska,
Edward Pałys,
The influence of tillage systems, fertilization and plant protection levels on weight and content of some macroelements in potato roots
,
Agronomy Science: Vol. 60 (2005)
-
MAŁGORZATA HALINIARZ,
SYLWIA CHOJNACKA,
HUBERT RUSECKI,
DOROTA GAWĘDA,
JUSTYNA ŁUKASZ,
The effect of combined use of herbicide and growth retardants as well as diversified mineral fertilization on weed infestation of spring wheat
,
Agronomy Science: Vol. 73 No. 4 (2018)
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.