Abstract
Plant infestations cause significant economic losses in agriculture, necessitating rapid and accurate detection for optimized agrotechnical operations and reduced environmental pollution. This study addresses this challenge by proposing a customized convolutional neural network (CNN) architecture for detecting corn leaf worm infestations in maize. The research focuses on developing unique CNN models through extensive experimentation, systematically adjusting hyperparameters like optimizers, filter numbers, and kernel sizes. The study’s main contributions include the design of an accurate CNN classifier, and its implementation in a user-friendly smartphone application. The research highlights the importance of hyperparameter tuning in CNN performance, demonstrating that optimal configurations lead to high accuracy (up to 95% for accuracy, precision, recall, specificity, and
F1-score). While the current model focuses on a single pest, the findings underscore the potential of custom CNN classifiers in vision systems for automated crop inspection, offering a promising solution for minimizing crop losses and the environmental impact of chemical plant protection products.
References
- REFERENCES
- Acharya R., 2020. Corn Leaf Infection Dataset, https://www.kaggle.com/datasets/qramkrishna/ corn-leaf-infection-dataset [access: 04.15.2023].
- Babendreier D., Toepfer S., Bateman M. et al., 2022. Potential management options for the invasive moth spodoptera frugiperda in Europe. J. Econ. Entomol. 115(6), 1772–1782. https://doi.org/ 10.1093/JEE/TOAC089
- Baldi P., Brunak S., Chauvin Y. et al., 2000. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16(5), 412–424. https://doi.org/10.1093/ BIOIN-FORMATICS/16.5.412
- Barbedo J.G.A., 2018. Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification. Comput. Electron. Agric. 153, 46–53. https://doi.org/10.1016/J.COMPAG.2018.08.013
- Berka A., Hafiane A., Es-Saady Y. et al., 2023. CactiViT: Image-based smartphone application and transformer network for diagnosis of cactus cochineal. Artif. Intell. Agric. 9, 12–21. https://doi.org/10.1016/J.AIIA.2023.07.002
- Chicco D., Jurman G., 2020. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21(1), 1–13. https://doi.org/10.1186/s12864-019-6413-7
- Coviello L., Cristoforetti M., Jurman G. et al., 2020. GBCNet: In-field grape berries counting for yield estimation by dilated CNNs. Appl. Sci. 10(14), 4870. https://doi.org/10.3390/ APP10144870
- Duan K., Keerthi S.S., Chu W. et al., 2003. Multi-category classification by soft-max combination of binary classifiers. In: T. Windeatt, F. Roli (eds), Multiple classifier systems. MCS 2003. Springer–Berlin–Heidelberg. https://doi.org/10.1007/3-540-44938-8_13
- Ebrahimi M.A., Khoshtaghaza M.H., Minaei S. et al., 2017. Vision-based pest detection based on SVM classification method. Comput. Electron. Agric. 137, 52–58. https://doi.org/10.1016/ J.COMPAG.2017.03.016
- FAOSTAT, 2024. https://www.fao.org/faostat/en/#data/QV [access: 23.10.2024].
- Ferentinos K.P., 2018. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311–318. https://doi.org/10.1016/J.COMPAG.2018.01.009
- Gao J., French A.P., Pound M.P. et al., 2020. Deep convolutional neural networks for image-based Convolvulus sepium detection in sugar beet fields. Plant Methods 16(1), 1–12. https://doi.org/ 10.1186/s13007-020-00570-z
- Gill H.S., Khalaf O.I., Alotaibi Y. et al., 2022. Multi-model CNN-RNN-LSTM based fruit recogni-tion and classification. Intell. Autom. Soft Comput. 33(1), 637–650. https://doi.org/10.32604/ IASC.2022.022589
- Hasan A.S.M.M., Sohel F., Diepeveen D. et al., 2021. A survey of deep learning techniques for weed detection from images. Comput. Electron. Agric. 184, 106067. https://doi.org/10.1016/ J.COMPAG.2021.106067
- Hughes D.P., Salathe M., 2015. An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv, 1511.08060. https://doi.org/10.48550/ arXiv.1511.08060
- Jeger M., Bragard C., Caffier D. et al., 2018. Pest risk assessment of Spodoptera frugiperda for the European Union. EFSA J. 16(8). https://doi.org/10.2903/J.EFSA.2018.5351
- Jia W., Tian Y., Luo R. et al., 2020. Detection and segmentation of overlapped fruits based on opti-mized mask R-CNN application in apple harvesting robot. Comput. Electron. Agric. 172, 105380. https://doi.org/10.1016/J.COMPAG.2020.105380
- Jiao L., Dong S., Zhang S. et al., 2020. AF-RCNN: An anchor-free convolutional neural network for multi-categories agricultural pest detection. Comput. Electron. Agric. 174, 105522. https://doi.org/10.1016/J.COMPAG.2020.105522
- Kamarudin M.H., Ismail Z.H., Saidi N.B., 2021. Deep learning sensor fusion in plant water stress assessment: a comprehensive review. Appl. Sci. 11(4), 1403. https://doi.org/10.3390/ APP11041403
- Khan S., Tufail M., Khan M.T. et al., 2021. Deep-learning-based spraying area recognition system for unmanned-aerial-vehicle-based sprayers. Turk. J. Elec. Eng. Comp. Sci. 29(1), 241–256. https://doi.org/10.3906/elk-2004-4
- Khanramaki M., Askari Asli-Ardeh E., Kozegar E., 2021. Citrus pests classification using an en-semble of deep learning models. Comput. Electron. Agric. 186, 106192. https://doi.org/ 10.1016/J.COMPAG.2021.106192
- Kussul N., Lavreniuk M., Skakun S. et al., 2017. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 14(5), 778–782. https://doi.org/10.1109/LGRS.2017.2681128
- Lanjewar M.G., Panchbhai K.G., 2023. Convolutional neural network based tea leaf disease predic-tion system on smart phone using paas cloud. Neural Comput. App. 35(3), 2755–2771. https://doi.org/10.1007/S00521-022-07743-y
- Lanjewar M.G., Parab J.S., 2024. CNN and transfer learning methods with augmentation for citrus leaf diseases detection using PaaS cloud on mobile. Multimed. Tools App. 83(11), 31733–31758. https://doi.org/10.1007/S11042-023-16886-6
- Li Y., Wang H., Dang L.M. et al., 2020. Crop pest recognition in natural scenes using convolutional neural networks. Comput. Electron. Agric. 169, 105174. https://doi.org/10.1016/J.COMPAG.2019.105174
- Loyani L., Machuve D., 2021. A deep learning-based mobile application for segmenting tuta absolu-ta’s damage on tomato plants. Eng. Technol. Appl. Sci. Res. 11(5), 7730–7737. https://doi.org/10.48084/ETASR.4355
- Mallick M.T., Biswas S., Das A.K. et al., 2023. Deep learning based automated disease detection and pest classification in Indian mung bean. Multimed. Tools App. 82(8), 12017–12041. https://doi.org/10.1007/S11042-022-13673-7
- Mohan K.J., Balasubramanian M., Palanivel S., 2016. Detection and recognition of diseases from paddy plant leaf images. Int. J. Comput. App. 144(12), 975–8887.
- Mohanty S.P., Hughes D.P., Salathé M., 2016. Using deep learning for image-based plant disease detection. Front. Plant Sci. 7, 215232. https://doi.org/10.3389/FPLS.2016.01419
- Bosco de Oliveira A. (ed.), 2019. Abiotic and biotic stress in plants. IntechOpen. https://doi.org/10.5772/intechopen.77845
- Peyal H.I., Nahiduzzaman M., Pramanik M.A.H. et al., 2023. Plant disease classifier: detection of dual-crop diseases using lightweight 2D CNN architecture. IEEE Access 11, 110627–110643. https://doi.org/10.1109/ACCESS.2023.3320686
- Qureshi S.H., Khan D.M., Razzaq A. et al., 2024. Comparison of conventional and computer-based detection of severity scales of stalk rot disease in maize. Sabrao J. Breed. Genet. 56(1), 292–301. https://doi.org/10.54910/SABRAO2024.56.1.26
- Srivastava A.K., Safaei N., Khaki S. et al., 2022. Winter wheat yield prediction using convolutional neural networks from environmental and phenological data. Sci. Rep. 12(1), 1–14. https://doi.org/10.1038/s41598-022-06249-w
- Storey G., Meng Q., Li B., 2022. Leaf disease segmentation and detection in apple orchards for precise smart spraying in sustainable agriculture. Sustainability 14(3), 1458. https://doi.org/ 10.3390/SU14031458
- Thenmozhi K., Srinivasulu Reddy U., 2019. Crop pest classification based on deep convolutional neural network and transfer learning. Comput. Electron. Agric. 164, 104906. https://doi.org/ 10.1016/J.COMPAG.2019.104906
- van den Berg J., Britz C., du Plessis H., 2021. Maize Yield response to chemical control of Spodop-tera frugiperda at different plant growth stages in South Africa. Agriculture 11(9), 826. https://doi.org/10.3390/AGRICULTURE11090826
- Vujovic Z., 2021. Classification model evaluation metrics. Int. J. Adv. Comput. Sci. Appl. 12(6). https://doi.org/10.14569/IJACSA.2021.0120670
- Wang J., Li Y., Feng H. et al., 2020. Common pests image recognition based on deep convolutional neural network. Comput. Electron. Agric. 179, 105834. https://doi.org/10.1016/J.COMPAG.2020.105834
- Xu W., Sun L., Zhen C. et al., 2022. Deep learning-based image recognition of agricultural pests. Appl. Sci. 12(24), 12896. https://doi.org/10.3390/APP122412896
- Yang C., Teng Z., Dong C. et al., 2022. In-field citrus disease classification via convolutional neural network from smartphone images. Agriculture 12(9), 1487. https://doi.org/10.3390/ AGRI-CULTURE12091487
Downloads
Download data is not yet available.
-
AGNIESZKA JAMIOŁKOWSKA,
BEATA HETMAN,
BARBARA SKWARYŁO-BEDNARZ,
MAREK KOPACKI,
Integrated pest management in Poland and the European Union, and the legal regulations for its functioning. A review
,
Agronomy Science: Vol. 72 No. 1 (2017)
-
Teresa Skrajna,
Maria Ługowska,
Heavy metal content in the soil and their phytoremediation by Isopyrum thalictroides L. populations in woodland habitats
,
Agronomy Science: Vol. 80 No. 2 (2025)
-
LESZEK RACHOŃ,
MONIKA KAWCZYŃSKA,
Changes in the structure of sowing area, yields and harvests of cereal crops in Poland in the years 1965–2015
,
Agronomy Science: Vol. 73 No. 4 (2018)
-
Elżbieta Harasim,
Cezary A. Kwiatkowski,
Jan Buczek,
Olimpia Klikocka-Wiśniewska,
Agrobiofortification of spring wheat with nitrogen and sulfur in terms of improving yield and grain quality
,
Agronomy Science: Vol. 79 No. 4 (2024)
-
PIOTR KRASKA,
EWA KWIECIŃSKA-POPPE,
The influence of water extract from Apera spica-venti on germination energy and germination capacity of Secale cereale and Triticosecale
,
Agronomy Science: Vol. 62 No. 2 (2007)
-
PIOTR KRASKA,
SYLWIA ANDRUSZCZAK,
EWA KWIECIŃSKA-POPPE,
Reakcja odmian pszenicy orkisz (Triticum aestivum spp. spelta) na dokarmianie dolistne
,
Agronomy Science: Vol. 74 No. 2 (2019)
-
ZOFIA RZYMOWSKA,
JANINA SKRZYCZYŃSKA,
Selected biological features of Agrostemma githago L. and Centaurea cyanus L. at various habitats of the Siedlecka Upland
,
Agronomy Science: Vol. 62 No. 2 (2007)
-
Piotr Barbaś,
Hakiye Aslan,
Imran Aslan,
Dominika Skiba,
Olutosin Ademola Otekunrin,
Barbara Helena Sawicka,
Prospects for using pesticides in agriculture
,
Agronomy Science: Vol. 78 No. 1 (2023)
-
ALEKSANDRA GŁOWACKA,
AGNIESZKA KASICZAK,
SŁAWOMIR MICHAŁEK,
The influence of different methods of weed regulation on yielding and protein content in seeds of common bean (Phaseolus vulgaris L.)
,
Agronomy Science: Vol. 73 No. 4 (2018)
-
Cezary Kwiatkowski,
Marian Wesołowski,
The canopy structure of the naked and husked forms of spring barley under different conditions of crop protection
,
Agronomy Science: Vol. 59 No. 2 (2004)
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.