Abstrakt
Badania oparto na doświadczeniu polowym przeprowadzonym w latach 2013–2015 w Stacji Doświadczalnej Uniwersytetu Przyrodniczego w Parczewie (51°38'24"N; 22°54'02"E), na glebie płowej. Eksperyment założono metodą podwójnie rozszczepionych jednostek eksperymentalnych (split-split-plot) w trzech powtórzeniach. Czynnikami I rzędu były trzy odmiany: ‘Albik’, ‘Rubik’ i ‘Violet de Rennes’. Czynnik II rzędu stanowiło zaś nawożenie mineralne (N0P0K0 – jako obiekt standardowy oraz P43, K124, N100, P43K124, N50P43K124, N100P43K124, N150P43K124), w przeliczeniu na formę pierwiastkową nawozów. Jako podstawowe nawożenie stosowano obornik bydlęcy w ilości 30 t·ha–1. Celem badań było opracowanie podstaw do zarządzania nawożeniem słonecznika bulwiastego, które umożliwi uzyskanie maksymalnego przyrostu części nadziemnej tego gatunku. Stwierdzono, iż dla tempa wzrostu roślin najbardziej optymalne okazało się podstawowe nawożenie obornikiem oraz nawożenie mineralne w ilości 100 kg N·ha–1 w formie azotanowo-amonowej. Samo nawożenie fosforowo-potasowe, mimo stosowania obornika, istotnie obniżało wysokość roślin w porównaniu z obiektem standardowym.
Bibliografia
- Bleinholder H., Buhr L., Feller C., Hack H., Hess M., Klose R., Meier U., Stauss R., Boom T. van den, Weber E., Lancashire P.D., Munger P., 2005. Compendium of Growth Stage Identification Keys for Mono- and Dicotyledonous Plants. Klucz do określania faz rozwojowych roślin jedno- i dwuliściennych w skali BBCH. Tłum. K. Adamczewski, K. Matysiak. IOR, Poznań.
- Chołuj D., Podlaski S., Wiśniewski G., Szmalec J., 2008. Kompleksowa ocena biologicznej przydatności 7 gatunków roślin wykorzystywanych na cele energetyczne. Stud. Rap. IUNG-PIB 11, 81–99.
- Danilčenko H., Jarienė E., Slepetiene A., Sawicka B., Zaldariene S., 2017. The distribution of bioac-tive compounds in the tubers of organically grown Jerusalem artichoke (Helianthus tuberosus L.) during the growing period. Acta Sci. Pol. Hortorum Cultus 16(3), 97–107, DOI: 10.24326/asphc.2017.3.10
- Dyrektywa Parlamentu Europejskiego i Rady (UE) 2018/2001 z dnia 11 grudnia 2018 r. w sprawie promowania stosowania energii ze źródeł odnawialnych (wersja przekształcona).
- Fotyma M., 2011. Testy glebowe potasu łatwo dostępnego dla roślin. Nawozy Nawoż. 44, 6–16.
- Gao K., Zhu T., Han G., 2011. Water and nitrogen interactively increased the biomass production of Jerusalem artichoke (Helianthus tuberosus L.) in semi-arid area. Afr. J. Biotechnol. 10(34), 6466–6472.
- Grześkowiak A., 2007. Nawożenie mineralne w bezpłużnych technologiach uprawy roli. Nasza Rola 8, 18–19.
- Hassan S. Hassan T., 2013. Effect Of Biofertilization By Using Three Azotobacter Isolates And Two Levels Of Mineral Nitrogen Fertilizer On Jerusalem Artichoke (Helianthus tuberosus L.,) Growth, Yield and Some Chemical Constituents. J. Am. Sci. 9(1), 437–446.
- Jariene E., Jeznach M., Danilcenko H., Zaldariene S., Taraseviciene Z., Wawrzyniak A., Tul-Krzyszczuk A., 2016. Distribution of macronutrients in organically grown Jerusalem artichoke (Helianthus tuberosus L.) tubers throughout the growing period. J. Elementol. 21(4), 1315–1325, DOI: 10.5601/jelem.2016.21.3.1086.
- Kasprzak A., Michalska K., Romanowska-Duda Z., Krzesik M., 2012. Rośliny energetyczne jako cenny surowiec do produkcji biogazu. Kosmos Probl. Nauk Biol. vol. 61, 2(295), 281–293.
- Kays S.J., Nottingham S.F., 2008. Biology and Chemistry of Jerusalem Artichoke Helianthus tu-berosus L. CRC Press Taylor & Francis Group, Broken Sound Parkway, NW.
- Klimont K., 2012. Ocena przydatności topinamburu (Helianthus tuberosus L.) i kostrzewy trzcinowej (Festuca arundinacea Schreb.) do rekultywacji bezglebowego podłoża wapna poflotacyj-nego użyźnionego osadem ścieków komunalnych. Biul. IHAR 265, 89–97.
- Kowalska A., 2017. Charakterystyka roślin energetycznych jako potencjalnego surowca do produk-cji biogazu. Eliksir 1(5), 11–15.
- Kozłowski S., Goliński P., Zielewicz W., Biniaś J., 2006. Badania nad nawożeniem pastwiska nawozami płynnymi. Annales UMCS, sec. E, Agricultura 61, 341–352.
- Paungbut D., Jogloy S., Vorasoot N., Patanothai A., 2015. Growth and Phenology of Jerusalem Artichoke (Helianthus tuberosus L.). Pak. J. Bot. 47(6), 2207–2214.
- PN-R-04016:1992. Analiza chemiczno-rolnicza gleby. Oznaczanie zawartości przyswajalnego cyn-ku. PKN, Warszawa.
- PN-R-04017:1992. Analiza chemiczno-rolnicza gleby. Oznaczanie zawartości przyswajalnej miedzi. PKN, Warszawa.
- PN-R-04018:1993. Analiza chemiczno-rolnicza gleby. Oznaczanie zawartości przyswajalnego boru. PKN, Warszawa.
- PN-R-04019:1993. Analiza chemiczno-rolnicza gleby. Oznaczanie zawartości przyswajalnego man-ganu. PKN, Warszawa.
- PN-R-04020:1994/Az1:2004. Analiza chemiczno-rolnicza gleby. Oznaczanie zawartości przyswa-jalnego magnezu. PKN, Warszawa.
- PN-R-04021:1994. Analiza chemiczno-rolnicza gleby. Oznaczanie zawartości przyswajalnego żela-za. PKN, Warszawa.
- PN-R-04022:1996/Az1:2002. Analiza chemiczno-rolnicza gleby. Oznaczanie zawartości przyswajalnego potasu w glebach mineralnych. PKN, Warszawa.
- PN-R-04023:1996. Analiza chemiczno-rolnicza gleby. Oznaczanie zawartości przyswajalnego fosforu w glebach mineralnych. PKN, Warszawa.
- Prośba-Białczak U., 2007. Produkcyjność topinamburu (Helianthus tuberosus L.) uprawianego bez nawożenia. Fragm. Agron. 4(96), 106–112.
- Puchalski C., Zapałowska A., Hury G., 2017. The impact of sewage sludge and biomass ash fertilization on the yield, including biometric features and physiological parameters of plants of two Jerusalem Artichoke (Helianthus tuberosus L.) cultivars. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment. Pisc. Zootech. 332(41)1, 37–52.
- Rodrigues M.A., Sousa L., Cabanas J.E., Arrobas M., 2007. Tuber yield and leaf mineral composi-tion of Jerusalem artichoke (Helianthus tuberosus L.) grown under different cropping practices. Span. J. Agric. Res. 5(4), 545–553.
- Sawicka B., 2010. Wartość energetyczna słonecznika bulwiastego (Helianthus tuberosus L.) jako źródła biomasy. Zesz. Nauk. UP Wrocł. Rol. 97(578), 245–256.
- Sawicka B., Kalembasa D. 2013. Assessment of the chemical composition of Jerusalem artichoke (Helianthus tuberosus L.) as energy feedstock. Ecol. Chem. Eng. 20 A(6), 689–699, DOI: 10.2428/ecea.2013.20(06)064.
- Sawicka B., 2016. Słonecznik bulwiasty (Helianthus tuberosus L.). Biologia, hodowla, znaczenie użytkowe. Wyd. UP w Lublinie, 223.
- Skiba D., Sawicka B., Kiełtyka-Dadasiewicz A., 2016. Możliwość uprawy Heliantus tuberosus na cele energetyczne. Wyd. Nauk. Tygiel, Lublin, 112–123.
- Spagnoletta A., De Santis A., Tampieri E., Baraldi E., Bachi A., Genchi G., 2006. Identification and kinetic characterization of HtDTC, the mitochondrial dicarboxylate–tricarboxylate carrier of Jerusalem artichoke tubers. J. Bioenerg. Biomembr. 38, 57–65.
- World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps, http://www.fao.org/3/a-i3794e.pdf
- Žaldarienė S., Kulaitienė J., Černiauskienė J., 2012. The quality comparison of different Jerusalem artichoke (Helianthus tuberosus L.) cultivars tubers. Žemės ūkio mokslai 19(4), 268–272.
- Żołnierz L., Klocek I., Pruchniewicz D., 2011. Rozwój skupień inwazyjnego słonecznika bulwiaste-go (Helianthus tuberosus sensu lato) i ich wpływ na roślinność siedlisk antropogenicznych. W: J. Kącki, E. Stefańska-Krzaczek (red.). Synantropizacja w dobie zmian różnorodności biologicznej. Acta Botanica Silesiaca 6, 213–227.
Downloads
Download data is not yet available.
-
BARBARA SYMANOWICZ,
STANISŁAW KALEMBASA,
MATEUSZ NIEDBAŁA,
MARTYNA TOCZKO,
Wpływ wzrastającego nawożenia potasem na zmiany w zawar-tości selenu i tytanu w glebie oraz rutwicy wschodniej (Galega orientalis Lam.)
,
Agronomy Science: Tom 70 Nr 4 (2015)
-
Lesław Zimny,
Ryszard Gandecki,
Roman Wacławowicz,
Roman Śniady,
Produkcyjność płodozmianu: burak cukrowy – pszenica jara – jęczmień ozimy uwarunkowana zróżnicowanym nawożeniem organicznym i wzrastającymi dawkami azotu mineralnego
,
Agronomy Science: Tom 60 (2005)
-
RYSZARD WEBER,
HENRYK BUJAK,
DARIUSZ ZALEWSKI,
Analiza zmienności plonowania odmian pszenicy ozimej na Dolnym Śląsku na podstawie doświadczeń porejestrowego doświadczalnictwa odmianowego
,
Agronomy Science: Tom 70 Nr 2 (2015)
-
Krzysztof Jończyk,
Zawartość azotu mineralnego w glebie w ekologicznym i konwencjonalnym systemie produkcji roślinnej
,
Agronomy Science: Tom 59 Nr 1 (2004)
-
BARBARA S KWARYŁO-BEDNARZ,
MARZENA SYLWIA BRODOWSKA,
JOANNA ONUCH,
JOANNA SAPUŁA,
Plonowanie krajowych odmian szarłatu (Amaranthus cruentus L.) w warunkach zróżnicowanego nawożenia makroelementami
,
Agronomy Science: Tom 69 Nr 2 (2014)
-
Piotr Kraska,
Edward Pałys,
Wpływ systemów uprawy roli, poziomów nawożenia i ochrony na mas i zawartość niektórych makroelementów w korzeniach ziemniaka
,
Agronomy Science: Tom 60 (2005)
-
Wacław Jarecki,
Tomasz Lachowski,
Wielkość i jakość plonu nasion bobiku w zależności od typu odmiany
,
Agronomy Science: Tom 77 Nr 2 (2022)
-
Halina Lipińska,
Ilona Woźniak-Kostecka,
Anna Kocira,
Wojciech Lipiński,
Stanisław Franczak,
Andrzej Bochniak,
Kwantyfikacja usług ekosystemowych użytków zielonych na tle innych upraw paszowych (kukurydzy) w oparciu o zawartość azotu mineralnego w warstwie gleby 60–90 cm
,
Agronomy Science: Tom 76 Nr 4 (2021)
-
RYSZARD BARYŁA,
MARIUSZ ARTUR KULIK,
Ocena przydatności wybranych odmian Lolium perenne L. do mieszanek pastwiskowych na gleby torfowo-murszowe
,
Agronomy Science: Tom 68 Nr 2 (2013)
-
Zdzisław Wyszyński,
Beata Michalska,
Wiesława Piotrowska,
Dorota Kucharczyk,
Ocena poprawności technologii produkcji na plantacjach produkcyjnych zbóż ozimych w rejonie Polski Centralnej
,
Agronomy Science: Tom 59 Nr 2 (2004)
<< < 11 12 13 14 15 16 17 18 19 20 > >>
Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.