Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Skip to main navigation menu Skip to main content Skip to site footer

Vol. 75 No. 1 (2020)

Articles

Impact of ultrasounds on physicochemical characteristics of potato tubers

DOI: https://doi.org/10.24326/as.2020.1.7
Submitted: August 29, 2019
Published: 2020-04-01

Abstract

The goal of the study was to determine the effect of sonication of different potato seed material cultivars on physicochemical properties. Tuber samples from a field experiment conducted in Parczew (51°38'N, 22°54'E) in 2015–2017 were used for the study. The experiment was carried out by the method of randomized sub-blocks, in a split-plot dependent system. The first order factor were pre-planting treatments: 1) the use of ultrasounds, 2) control object without ultrasounds. The second order factor consisted of 10 potato cultivars of all earliness groups. Seed material was a subject to immerse sonication using an ultrasonic device. Following parameters were evaluated: dry matter of tubers, starch content, textural features, acidity (pH) of potato juice. Sonication contributed to the increase in dry matter and starch contents in tubers, the change in pH towards alkaline reaction, and textural parameters of raw and cooked tubers were increased.

References

  1. Adekunte A., Tiwari B.K., Scannell A., Cullen P.J., O’Donnell C., 2010. Modelling of yeast inactivation in sonicated tomato juice. Int. J. Food Microbiol. 137, 116–120. https://doi.org/10.1016/j.ijfoodmicro.2009.10.006
  2. Aguiar Cipriano P. de, Ekici L., Barnes R.C., Gomes C., Talcott S.T., 2015. Pre-heating and polyphenol oxidase inhibition impact on extraction of purple sweet potato anthocyanins. Food Chem. 180, 227–234. https://doi.org/10.1016/j.foodchem.2015.02.020
  3. Awad T.S., Moharram H.A., Shaltout O.E., Asker D., Youssef M.M., 2012. The use of ultrasound in the analysis, processing and control of food quality: a review. Int. Food Res. 48(2), 410–427. https://doi.org/10.1016/j.foodres.2012.05.004
  4. Asmamaw Y., Tekalign T., 2010. Specific Gravity, Dry Matter Concentration, pH, and Crisp-making Potential of Ethiopian Potato (Solanum tuberosum L.) Cultivars as Influenced by Growing Environment and Length of Storage under Ambient Conditions. Potato Res. 53, 93–109.
  5. Baryłko-Pikielna N., Matuszewska I., 2014. Sensoryczne badania żywności. Podstawy – Metody – Zastosowanie [Sensory testing of foods. Basics – Methods – Applications]. 2nd ed. Wyd. Nauk. PTTŻ, Kraków, pp. 375.
  6. Bleinholder H.L., Weber E., Buhr L., Feller C., Hess M., Wicke H., Meier U., Van Den Boom T., Lancashire P., Buhr D.L., Hack H., Klose R., Stauss R., 2001. Compendium of growth stage identification keys for mono- and dicotyledonous plants. BBCH Monograph. 2nd ed. Edited by the Federal Center for Agricultural and Forest Biological Research Uwe Meier. https://doi.org/10.5073/bbch0461
  7. Bornhorst G.M., Singh R.P., 2014. Gastric digestion in vivo and in vitro: how the structural aspects of food influence the digestion process. Annu. Rev. Food Sci. Technol. 5, 111–132. https://doi.org/10.1146/annurev-food-030713-092346
  8. Bourne M.C., 2002. Food Texture and Viscosity: Concept and Measurement. Academic Press, San Diego, pp. 45.
  9. Chemat F., Huma Z., Khan M.K., 2011. Applications of ultrasound in food technology: processing, conservation and extraction. Ultrason. Sonochem. 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023
  10. Commandini P., Blanda G., Soto-Calaballero M.C., Sala V., Tylewicz U., Mujica-Paz H., Valdez Fragoso A.B., Gallina Toschi T., 2013. Effects of power ultrasound on immersion freezing parameters of potatoes. Innov. Food Sci. Emerg. Technol. 18, 120–125. https://doi.org/10.1016/j.ifset.2013.01.009
  11. Dobránszki J., Hidvég N., Gulyás A., Teixeira da Silva J.A., 2019. mRNA transcription profile of potato Solanum tuberosum L. exposed to ultrasound during different stages of in vitro plantlet development. Plant Mol. Biol. 100(4–5), 511–525. https://doi.org/10.1007/s11103-019-00876-0
  12. Dolatowski Z., Stadnik J., Stasiak D., 2007. Applications of ultrasound in food technology. Acta Sci. Pol. Technol. Aliment. 6(3), 89–99.
  13. Dolik K., Kubiak M.S., 2013. Instrumentalny test analizy profilu tekstury w badaniu jakości wybranych produktów spożywczych [Instrumental test of texture profile analysis in the study of selected food quality]. Nauki Inż. Technol./ Eng. Sci. Technol. 3(10), 35–44.
  14. Foegeding E.A., 2007. Rheology and sensory texture of biopolymer gels. Curr. Opin. Colloid Interface Sci. 12, 242–250. https://doi.org/10.1016/j.cocis.2007.07.001
  15. Hyde R.B., Morrison J.W., 1964. The effect of storage temperature on sugar reduction, pH and phosphorylase enzyme activity in potato tubers. Am. Potato J. 41, 163–168. https://doi.org/10.1007/BF02855318
  16. Jakubczyk E., Uziak D., 2005. Charakterystyka instrumentalnych metod badania właściwości mechanicznych wybranych owoców i warzyw. Inż. Rol. 71, 181–187.
  17. Jakubowski T., 2019. The Influence of selected physical methods on the content of starch and simple sugars in stored potato tubers. Applications of Electromagnetics in Modern Engineering and Medicine (PTZE), Janów Podlaski, Poland, 63–66.
  18. Khatkar A.B., Kaur A., Khatkar S.K., Mehta N., 2018. Characteristics of thermostable whey protein: Impact of ultrasounds on rheological, thermal, structural and morphological properties. Ultrason. Sonochem. 49, 333–342. https://doi.org/10.1016/j.ultsonch.2018.08.026
  19. Knorr D., Zenker M., Heinz V., Lee D.U., 2004. The use and potential of ultrasound in food processing. Trends Food Sci. Technol. 15(5), 261–266. https://doi.org/10.1016/j.tifs.2003.12.001
  20. Lewandowicz G., Kowalczewski P., Białas W., Olejnik A., Rychlik J., 2012. Rozdział frakcji soku ziemniaczanego różniących się masą cząsteczkową i charakterystyka ich aktywności biologicznej [Separation of the fractions of potato juice of different molecular weight and characterization of their biological activities]. Biul. IHAR 266, 331–344.
  21. Lenartowicz T., 2013. Metodyka doświadczeń polowych z ziemniakiem. COBORU, Słupia Wielka.
  22. Lisińska G., Leszczyński W., 1989. Potato Science and Technology. Elsevier Applied Sci., London–New York, 1–24.
  23. Liu Y., Sun Y., Yu H., Yin Y., Li X., Duan X., 2017. Hot air drying of purple-fleshed sweet potato with contact ultrasound assistance. Drying Technol. 35(5), 564–576. https://doi.org/10.1080/07373937.2016.1193867
  24. Miao W., Xu X., Zhou B., Pan S., Wang K., Fan Ch., Wang L., 2014. Improvement of Sugar Production from Potato Pulp with Microwave Radiation and Ultrasonic Wave Pre-treatment’s. J. Food Proc. Eng. 37(1), 86–90. https://doi.org/10.1111/jfpe.12065
  25. Miłowska K., 2007. Ultrasound – mechanisms of action and application in sonodynamic therapy. Postępy Hig. Med. Dośw. 61, 338–349.
  26. Moelants K.R.N., Cardinaels R., Van Buggenhout S., Van Loey A.M., Moldenaers P., Hendrickx M.E., 2014. A review on the relationships between processing, food structure, and rheological properties of plant-tissue-based food suspensions. Compr. Rev. Food Sci. Food Saf. 13, 241–260. https://doi.org/10.1111/1541-4337.12059
  27. Mohammadi V., Ghasemi-Varnamkhasti M., Ebrahimi R., Abbasvali M., 2014. Ultrasonic Techniques for the Milk Production Industry. Measurement 58, 93–102. https://doi.org/10.1016/j.measurement.2014.08.022
  28. Moza M.I., Mironescu M., Florea A., 2012. Influence of Physical Treatments on the Potato Starch Granules Micro- and Ultra Structure. Bulletin UASVM Agriculture 69(2), 305–312. https://doi.org/10.15835/buasvmcn-agr:8778
  29. Nowacka M., Wedzik M., 2016. The effect of ultrasound treatment on the microstructure, colour and content of carotenoids in fresh and dried carrot tissue. Appl. Acoustics 103, 163–171. https://doi.org/10.1016/j.apacoust.2015.06.011
  30. Ozunan C., Cárcel J.A., García-Pérez J.V., Mulet A., 2011. Improvement of water transport mechanisms during potato drying by applying ultrasound. J. Sci. Food Agric. 91(14), 2511–2517. https://doi.org/10.1002/jsfa.4344
  31. Pan Y., Chen L., Pang L., Chen X., Jia X., Li X., 2020. Ultrasound treatment inhibits browning and improves the antioxidant capacity of freshly cut sweet potatoes during refrigerated storage. RSC Adv. 10, 9193–9202. https://doi.org/10.1039/C9RA06418d
  32. PN/90-A-75101/03:1990. Zawartość suchej masy w przetworach owocowych i warzywnych. Metoda wagowa. PKN, Warszawa.
  33. PN-EN ISO 10520:2002. Skrobia naturalna – Oznaczanie zawartości skrobi – Metoda polarymetryczna Ewersa. PKN, Warszawa.
  34. Rykaczewska K., 2010. Wpływ warunków stresowych w okresie przechowywania na wigor bulw matecznych ziemniaka [The impact of stressful conditions during storage on the vigour of potato tubers mother]. Fragm. Agron. 27(1), 117–127.
  35. Rytel E., 2004. Wpływ dojrzałości ziemniaka jadalnego na jego konsystencję po ugotowaniu. Zesz. Probl. Postęp. Nauk Rol. 500, 465–473.
  36. Sawicka B., 2013. Metody fizyczne stymulacji sadzeniaka – nowe techniki w produkcji ziemniaków [Physical methods of stimulation of seed – a new technology in the production of potatoes]. Pol. Ziemn. 1, 13–18.
  37. Sawicka B., Dolatowski Z., 2007. Zmienność ciemnienia miąższu bulw nowych odmian ziemniaka pod wpływem ultradźwięków [The variability of tuber flesh darkening of new pota-to cultivars under the action of ultrasound]. Zesz. Probl. Postęp. Nauk Rol. 517(2), 639–649.
  38. Sawicka B., Michałek W., Pszczółkowski P., 2015. The relationship of potato tubers chemical composition with selected physiological indicators. Zemdirbyste/Agriculture 102(1), 41–50. https://doi.org/10.13080/za.2015.102.005
  39. Soria A.C., Villamiel M., 2010. Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci. Technol. 21(7), 323–331. https://doi.org/10.1016/j.tifs.2010.04.003
  40. Statistica 8.0. https://en.freedownloadmanager.org/users-choice/Download_Statistica_8.html
  41. Surmacka-Szczęśniak A.S., 2002. Texture is a sensory property. Food Qual. Prefer. 13, 215–225. https://doi.org/10.1016/S0950-3293(01)00039-8
  42. Teixeira da Silva J.A., Dobránszki J., 2014. Sonication and ultrasound: Impact on plant growth and development. Plant Cell Tiss. Organ Cult. 117(2), 131–143. https://doi.org/10.1007/s11240-014-0429-0
  43. Terefe N.S., Buckow R., Versteeg C., 2014a. Quality-related enzymes in fruit and vegetable products: effects of novel food processing technologies, part 1: high-pressure processing. Crit. Rev. Food Sci. Nutr. 54(1), 24–63. https://doi.org/10.1080/10408398.2011.566946
  44. Terefe N.S., Buckow R., Versteeg C., 2014b. Quality-related enzymes in plant-based products: effects of novel food-processing technologies, part 3: ultrasonic processing. Crit. Rev. Food Sci. Nutr. 55, 147–158. https://doi.org/10.1080/10408398.2011.586134
  45. Terefe N.S., Pasero C., Fernando S., Rout M., Woonton B., Mawson R., 2011. Application of low intensity ultrasound to improve the textural quality of processed vegetables. Institute of Food Technologists (IFT) Annual Meeting, New Orleans, LA, USA, June 11–14. http://hdl.handle.net/102.100.100/104100?index=1
  46. Terefe N.S., Sikes A.L, Juliano P., 2016. Chapter 8. Ultrasound for the structural modification of food products. In: K. Knoerzer, P. Juliano, G. Smithers, Innovative food processing technologies. Elsevier BV, Amsterdam. https://doi.org/10.1016/B978-0-08-100294-0.00008-0
  47. Trinh T.K., 2012. In the texture profile analysis test. Conference: Chemeca 2012. Wellington, New Zealand, 1–12.
  48. Thybo A.K., Martens M., 2000. Analysis of sensory assessors in potato profiling by multidimensional modeling. Food Qual. Prefer. 11(4), 283–288. https://doi.org/10.1016/S0950-3293(99)00045-2
  49. Thygesen L.G., Thybo A.K., Engelsen S.B., 2001. Prediction of Sensory Texture Quality of Boiled Potatoes from Low-field 1H NMR of Raw Potatoes. The Role of Chemical Constituents. Lebensm.-Wiss. Technol. 34, 469–477. https://doi.org/10.1006/fstl.2001.0788
  50. Trętowski I.J., Wójcik A.R., 1998. Metodyka doświadczeń rolniczych [Methodology of agricultural experience]. WSR‎P, Siedlce.‎
  51. Waldron K.W., Smith A.C., Parr A.J., Ng A., Parker M.L., 1997. New approaches to understanding and controlling cell separation in relation to fruit and vegetable texture. Trends Food Sci. Technol. 8, 213–221. https://doi.org/10.1016/S0924-2244(97)01052-2
  52. Wójtowicz A., Mrówczyński M. (eds.), 2017. Metodyka integrowanej ochrony ziemniaka dla doradców [Integrated protection methodology for potato advisers]. IOR-PIB, Poznań.
  53. WRB, 2014. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports 106.
  54. Wu J., Lin L., 2002. Ultrasound-induced stress responses of Panax ginseng cells: enzymatic browning and phenolics production. Biotechnol. Progr. 18, 862–866. https://doi.org/10.1021/bp0255210
  55. Wu J., Lin L., 2003. Enhancement of taxol production and release in Taxus chinensis cell cultures by ultrasound, methyl jasmonate and in situ solvent extraction. Appl. Microbiol. Biotechnol. 62, 151–155. https://doi.org/10.1007/s00253-003-1275-x
  56. Wu J.Y., Ge X.C., 2004. Oxidative burst, jasmonic acid biosynthesis, and taxol production induced by low-energy ultrasound in Taxus chinensis cell suspension cultures. Biotechnol. Bioeng. 85, 714–721. https://doi.org/10.1002/bit.10911
  57. Wu J., Gamage T.V., Vilkhu K.S., Simons L.K., Mawson R., 2008. Effect of thermo-sonication on quality improvement of tomato juice. Innov. Food Sci. Emerg. Technol. 9, 186–195. https://doi.org/10.1016/j.ifset.2007.07.00
  58. Wu C., Zhou X., 2018. The Overview of Functional Starch. In: Z. Jin (ed.), Functional Starch and Applications in Food. Springer, Singapore. https://doi.org/10.1007/978-981-13-107777_1
  59. Zheng J., Li Q., Hu A., Yang L., Lu J., Zhang X., Lin Q., 2013. Dual-frequency ultrasound effect on structure and properties of sweet potato starch. Starch 65(7–8), 621–627. https://doi.org/10.1002/star.201200197
  60. Zhu J., Li L., Chen L., Li X., 2012. Study on super molecular structural changes of ultrasonic treated potato starch granules. Food Hydrocoll. 29(1), 116–122. https://doi.org/10.1016/j.foodhyd.2012.02.004

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.