Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Skip to main navigation menu Skip to main content Skip to site footer

Vol. 75 No. 1 (2020)

Articles

Quantifying the peak yields of four cellulosic bioenergy crops in the East-Central Poland.

DOI: https://doi.org/10.24326/as.2020.1.3
Submitted: November 25, 2019
Published: 2020-04-01

Abstract

Through the six successive years (2010–2015), from the 5th to the 10th year of cultivation, research was carried out on yielding and species characteristics of 4 perennial vegetatively propagated energy crops. These were: 2 species of Miscanthus, Sida hermaphrodita, and 2 Salix viminalis clones (1047 and 1054), cultivated side-by-side. The height and shoot number, yield and biomass moisture were evaluated. The highest shoot density of Miscanthus sacchariflorus was found, while the largest yield of Miscanthus × giganteus. Salix viminalis and Miscanthus × giganteus biomass was characterized by the highest content of accumulated moisture (on average 50%). The Sida hermaphrodita plants were appeared as the tallest ones on the six-year average. It is worth mentioning, we have concluded that yield of Miscanthus, and Sida is high and stable in the long-term study. However, in the average yields of these 2 species (Miscanthus × giganteus and Sida hermaphrodita) no statistically significant differences were found. Results can strengthen the improved species diversity in perennial energy crops cultivation.

References

  1. Adler P.R., Sanderson M.A., Boateng A.A., Weimer P.J., Jung H.-J.G., 2006. Biomass yield and biofuel quality of switchgrass harvested in fall or spring. Agron. J. 98, 1518–1525. http://dx.doi:10.2134/agronj2005.0351
  2. Amaducci S., Facciotto G., Bergante S., Perego A., Serra P., Ferrarini A., Chimento C., 2017. Biomass production and energy balance of herbaceous and woody crops on marginal soils in the Po Valley. GCB Bioenergy 9, 31–45. http://doi.org/10.1111/gcbb.12341
  3. Amougou N., Bertrand I., Cadoux S., Recous S., 2012. Miscanthus × giganteus leaf senescence, decomposition and C and N inputs to soil. GCB Bioenergy 4, 698–707. https://doi.org/10.1111/j.1757-1707.2012.01192.x
  4. Arnoult S., Brancourt-Hulmel M., 2015. A Review on Miscanthus Biomass Production and Composition for Bioenergy Use: Genotypic and Environmental Variability and Implications for Breeding. Bioenerg. Res. 8, 502–526. https://doi.org/10.1007/s12155-014-9524-7
  5. Borkowska H., Molas R., 2012. Two extremely different crops, Salix and Sida, as sources of renewable bioenergy. Biomass Bioenerg. 36, 234–240. https://doi.org/10.1016/j.biombioe.2011.10.025
  6. Borkowska H., Molas R., 2013. Yield comparison of four lignocellulosic perennial energy crop species. Biomass Bioenerg. 51, 145–153. http://dx.doi.org/10.1016./j.biombioe.2013.01.017
  7. Borkowska H., Molas R., Skiba D., 2015. Plonowanie ślazowca pensylwańskiego w wieloletnim użytkowaniu [Yielding of Virginia mallow in long-term use]. Acta Agrophys. 22(1), 5–15 [summary in English].
  8. Christian D.G., Riche A.B., Yates N.E., 2008. Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind. Crops Prod. 28, 320–327. http://dx.doi.org/10.1016/j.indcrop.2008.02.009
  9. Clifton-Brown J.C., Lewandowski I., Andersson B., Basch G., Christian D.G., Kjeldsen J.B., Jørgensen U., Mortensen J.V., Riche A.B., Schwarz K.-U., Tayebi K., Teixeira F., 2001. Performance of 15 Miscanthus genotypes in five sites Europe. Agron. J. 93, 1013–1019. http://dx.doi.org/10.2134/agronj2001.9351013x
  10. Damm T., Pattathil S., Günl M., Jablonowski N.D., O’Neill M., Grün K.S., Grande P.M., Leitner W., Schurr U., Usadel B., Klose H., 2017. Insights into cell wall structure of Sida hermaphrodita and its influence on recalcitrance. Carbohydr. Polym. 168, 94–102. http://dx.doi.org/10.1016/j.carbpol.2017.03.062
  11. Damm T., Grande P.M., Jablonowski N.D., Thiele B., Disko U., Mann U., Schurr U., Leitner W., Usadel B., de María P.D., Klose H., 2017. OrganoCat pretreatment of perennial plants: Synergies between a biogenic fractionation and valuable feedstocks. Bioresour. Technol. 244, 889–896. https://doi.org/10.1016/j.biortech.2017.08.027
  12. Dubis B., Jankowski K.J., Załuski D., Bórawski P., Szempliński W., 2019. Biomass production and energy balance of Miscanthus over a period of 11 years: A case study in a large‐scale farm in Poland. GCB Bioenergy 11, 1187–1201. http://doi.org/10.1111/gcbb.12625
  13. Gehren P. von, Gansberger A., Pichler W., Weigl M., Feldmeier S., Wopienka E., Bochmann G., 2019. A practical field trial to assess the potential of Sida hermaphrodita as a versatile, perennial bioenergy crop for Central Europe. Biomass Bioenerg. 122, 99–108. https://doi.org/10.1016/j.biombioe.2019.01.004
  14. Jablonowski N.D., Kollmann T., Nabel M., Damm T., Klose H., Muller M., Blasing M., Seebold S., Kraft S., Kuperjans I., Dahmen M., Schurr U., 2017. Valorization of Sida (Sida hermaphrodita) biomass for multiple energy purposes. GCB Bioenergy 9, 202–214. http://doi.org/10.1111/gcbb.12346
  15. Jensen E., Robson P., Farrar K., Jones S.T., Clifton-Brown J., Payne R., Donnison I., 2017. Towards Miscanthus combustion quality improvement: the role of flowering and senes-cence. GCB Bioenergy 9, 891–908. https://doi.org/10.1111/gcbb.12391
  16. Jeżowski S., 2008. Yield traits of six clones of Miscanthus in the first 3 years following planting in Poland. Ind. Crops Prod. 27(1), 65–68. http://doi.org/10.1016/j.indcrop.2007.07.013
  17. Kopp R.F., Abrahamson L.P., White E.H., Volk T.A., Nowak C.A., Fillhart R.C., 2001. Willow biomass production during ten successive annual harvests. Biomass Bioenerg. 20, 1–7. https://doi.org/10.1016/S0961-9534(00)00063-5
  18. Kowalczyk-Juśko A., Kościk B., 2004. Produkcja biomasy miskanta cukrowego i spartiny preriowej w zróżnicowanych warunkach glebowych oraz możliwości jej konwersji na energię [The Miscanthus sacchariflorus and Spartina pectinata biomass production in different soil conditions and possibilities of its conversion into Energy]. Biul. IHAR 234, 213–218 [summary in English].
  19. Kujawski J., Woolston D., Englert J.M., 1997. Propagation of Virginia Mallow (Sida hermaphrodita (L.) Rusby) from seeds, rhizomes. Restor. Manage. Notes 15, 193–194.
  20. Lewandowski I., Clifton-Brown J.C., Scurlock J.M.O, Huisman W., 2000. Miscanthus: European experience with a novel Energy crop. Biomass Bioenerg. 19, 209–227. https://doi.org/10.1016/S0961-9534(00)00032-5
  21. Maletta E., Martin-Sastre C., Ciria P., Perez P, Val A. del, Salvado A., Rovira L., Diez R., Serra J., Arechavala Y.G., Carrasco J.E., 2012. Perennial energy crops for semiarid lands in the Mediterranean: Elytrigia elongate. 20th European Biomass Conference and Exhibition, Milan, Italy. http://dx.doi:10.5071/20thEUBCE2012-1CO.9.4
  22. Molas R., Borkowska H., Kupczyk A., Osiak J., 2018. Virginia Fanpetals (Sida) Biomass Can be Used to Produce High-Quality Bioenergy. Agron. J. 110, 24–29. http://doi.org/10.2134/agronj2018.01.0044
  23. Oliveira J.A., West C.P., Afif E., Palencia P., 2017. Comparison of Miscanthus and Switchgrass Cultivars for Biomass Yield, Soil Nutrients, and Nutrient Removal in North-west Spain. Agron. J. 109, 122–130. http://dx.doi:10.2134/agronj2016.07.0440
  24. Payne C., Wolfrum E.J., Nagle N., Brummer J.E., Hansen N., 2017. Evaluation of fifteen cultivars of cool-season perennial grasses as biofuel feedstocks using near-infrared. Agron. J. 109, 1923–1934. http://dx.doi:10.2134/agronj2016.09.0510
  25. Pignon C.P., Spitz I., Sacks E.J., Jørgensen U., Kørup K., Long S.P., 2019. Siberian Miscanthus sacchariflorus accessions surpass the exceptional chilling tolerance of the most widely cultivated clone of Miscanthus × giganteus. GCB Bioenergy 11, 883–894. http://doi.org/10.1111/gcbb.12599
  26. Rickett H.W., 1963. The new field book of American wild flowers. G.P. Putnam’s Sons, New York, pp. 414.
  27. Sanford G.R., Oates L.G., Jasrotia P., Thelen K.D., Robertson G.P., Jackson R.D., 2016. Comparative productivity of alternative cellulosic bioenergy cropping systems in the North Central USA. Agric. Ecosyst. Environ. 216, 344–355. https://doi.org/10.1016/j.agee.2015.10.018
  28. Skowera B., 2014. Changes of hydrothermal conditions in the Polish area (1971–2010). Fragm. Agron. 31, 74–87.
  29. Skowera B., Puła J., 2004. Skrajne warunki pluwiotermiczne w okresie wiosennym na obszarze Polski w latach 1971–2000 [Pluviometric extreme conditions in spring season in Poland in the years 1971–2000]. Acta Agrophys. 3(1), 171–177 [summary in English].
  30. Spooner D.M., Cusick A.W., Hall G.F., Baskin J.M., 1985. Observations on the distribution and ecology of Sida hermaphrodita (L.) Rusby (Malvaceae). Sida Contrib. Bot. 11, 215–225.
  31. Stolarski M., Szczukowski S., Tworkowski J., Grzelczyk M., 2005. Produktywność wierzb krzewiastych pozyskiwanych w jednorocznych cyklach zbioru [Productivity of willow short rotation coppice in one-year cuting cycles]. Acta Sci. Pol. Agricultura 4, 141–151 [summary in English].
  32. Stolarski M., Szczukowski S., Tworkowski J., Krzyżaniak M., Załuski D., 2019. Willow production during 12 consecutive years – The effects of harvest rotation, planting density and cultivar on biomass yield. GCB Bioenergy 11, 635–656. http://doi.org/10.1111/gcbb.12583
  33. Styszko L., Fijałkowska D., 2016. Wpływ odmian i klonów wierzby oraz gęstości sadzenia na plon biomasy na cele energetyczne w 8 roku uprawy [Impact of varieties, clones and planting density of willow on yield of biomass for energy purposes during 8th year of cultivation]. JCEEA 63, 461–468 [summary in English]. http://doi.org/10.7862/rb.2016.229
  34. Szczukowski S., Tworkowski J., Stolarski M., Fortuna W., 2009. Plon biomasy wierzby pozyskanej w krótkich rotacjach zbioru na plantacji przemysłowej [The willow biomass yield obtained in short harvest rotation on an industrial plantation]. Fragm. Agron. 26, 146–155 [summary in English].
  35. Xu J., Gauder M., Gruber S., Claupein W., 2017. Yields of Annual and Perennial Energy Crops in a 12-year Field Trial. Agron. J. 109, 1–11. http://doi.org/10.2134/agronj2015.0501

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.