Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Skip to main navigation menu Skip to main content Skip to site footer

Vol. 75 No. 3 (2020)

Articles

Control of the presence of mycotoxins in agricultural products and food. Part I. A review

DOI: https://doi.org/10.24326/as.2020.3.2
Submitted: May 21, 2020
Published: 2020-10-02

Abstract

The quality of food and feed is determined primarily by factors that are characteristic of production on an agricultural or horticultural farm. Each subsequent stage associated with the processing of raw materials of plant or animal origin can also lead to the introduction or formation of undesirable components that can pose a threat to our health or life. Numerous scientific studies lead to constant updating of knowledge about the danger of contaminants in food. One such group is mycotoxins, which are secondary metabolites of filamentous fungi. Factors that increase the risk of mycotoxins in food and feed are known. Appropriate legal regulations have been introduced to restrict the placing of products contaminated with mycotoxins on the market. In addition, research is being carried out to optimize the procedures for sample preparation in terms of assessing the presence of this group of contaminants in agricultural raw materials, food and feed. The paper presents a review covering issues related to factors increasing the risk of mycotoxins, current legal requirements for the presence of mycotoxins in food and techniques for sample preparation for analysis, with particular emphasis on the stage of isolation and purification of mycotoxins.

References

  1. Anastassiades A., Lehotay S.J., Stajnbaher D., Schenck F.J., 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 86(2), 412–431.
  2. Berthiller F., Schuhmacher R., Buttinger G., Krska R., 2005. Rapid simultaneous determination of major type A- and B-trichothecenes as well as zearalenone in maize by high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 1062(2), 209–216. https://doi.org/10.1016/j.chroma.2004.11.011
  3. Bianchini A., Bullerman L.B., 2014. Mycotoxins classification. W: C.A. Batt, M.L. Tortorello (red.), Encyclopedia of Food Microbiology (2nd ed.). Academic Press, Oxford, UK, 854–861.
  4. Bis H., Frączek K., Mędrela-Kuder E., 2010. Produkcja mikotoksyn przez grzyby wyizolowane z warzyw okopowych. Nauk. Przyr. Technol. 4(6), 1–8.
  5. Bullerman L.B., Schroeder L.L., Park K.-Y., 1984. Formation and Control of Mycotoxins in Food. J. Food. Prot. 47(8), 637–646. https://doi.org/10.4315/0362-028X-47.8.637
  6. Burek O., Wiśniewska-Dmytrow H., Żmudzki J., 2011. Determination of T-2 and HT-2 toxins in feedstuffs by high-performance liquid chromatography with fluorescence detector. Bull. Vet. Inst. Pulawy 55(4), 737–40.
  7. Cavaliere C., D’Ascenzo G., Foglia P., Pastorini E., Samperi R., Laganà A., 2005. Determination of type B trichothecenes and macrocyclic lactone mycotoxins in field contaminated maize. Food Chem. 92(3), 559–568. https://doi.org/10.1016/j.foodchem.2006.12.057
  8. Cavaliere C., Foglia P., Guarino C., Motto M., Nazzari M., Samperi R., Lagana A., Berardo N., 2007. Mycotoxins produced by Fusarium genus in maize: determination by screening and confirmatory methods based on liquid chromatography tandem mass spectrometry. Food Chem. 105(2), 700–710.
  9. CE, 2006. Commission Regulation (EC) No 1881/2006. Off. J. Eur. Union 49(L 364), 5–24.
  10. CE, 2007. Commission Regulation (EC) No 1126/2007 of 28 September 2007 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. Off. J. Eur. Union 255, 14–17.
  11. Chełkowski J., 1985. Mikotoksyny wytwarzające grzyby, mikotoksyny i mikotoksydazy. Wyd. SGGW, Warszawa.
  12. Chen Y., Chen C.J., Li J., Luan L.J., Liu X.S., Wu Y.J., 2015. Determination of 10 mycotoxin contaminants in Panax notoginseng by ultra performance liquid chromatography–tandem mass spectrometry. Acta Pharm. Sin. 50, 81–85.
  13. Christopher Young J., Games D.E., 1992. Supercritical fluid chromatography of Fusarium mycotoxins. J. Chromatogr. A 627(1–2), 247–254. https://doi.org/10.1016/0021-9673(92)87204-L
  14. Dall’Asta C., Galaverna G., Biancardi A., Gasparini M., Sforza S., Dossena A., Marchelli R., 2004. Simultaneous liquid chromatography–fluorescence analysis of type A and type B trichothecenes as fluorescent derivatives via reaction with coumarin-3-carbonyl chloride. J. Chromatogr. A 1047(2), 241–247. https://doi.org/10.1016/j.chroma.2004.07.002
  15. De Smet D., Monbaliu S., Dubruel P., Van Peteghem C., Schacht E., De Saeger S., 2010. Synthesis and application of a T-2 toxin imprinted polymer. J. Chromatogr. A 1217(17). 2879–2886, https://doi.org/10.1016/j.chroma.2010.02.068
  16. Dyrektywa Komisji 2005/38/WE. 2005. Dziennik Urzędowy Unii Europejskiej.
  17. European Commission, 2020. https://webgate.ec.europa.eu/rasff-window/portal/ [data dostępu: 04.05.2020].
  18. Gertig H., 1996. Żywność a zdrowie. PZWL, Warszawa.
  19. Giraudi G., Anfossi L., Baggiani C., Giovannoli C., Tozzi C., 2007. Solid-phase extraction of ochratoxin A from wine based on a binding hexapeptide prepared by combinatorial synthesis. J. Chromatogr. A 1175(2), 174–180. https://doi.org/10.1016/j.chroma.2007.10.057
  20. Grajewski J., 2006. Mikotoksyny i grzyby pleśniowe. Zagrożenie dla człowieka i zwierząt. Wyd. Uniwersytetu Kazimierza Wielkiego, Bydgoszcz.
  21. Hallier A., Celette F., David C., 2011. Effects of sampling and extraction on deoxynivalenol quantification. Food Chem. 127(1), 303–307. https://doi.org/10.1016/j.foodchem.2010.12.119
  22. Hernández M.J., García-Moreno M.V., Durán E., Guillén D., Barroso C.G., 2006. Validation of two analytical methods for the determination of ochratoxin A by reversed-phased high-performance liquid chromatography coupled to fluorescence detection in musts and sweet wines from Andalusia. Anal. Chim. Acta 566(1), 117–121. https://doi.org/10.1016/j.aca.2006.02.002
  23. Holcomb M., Thompson H.C., Cooper W.M., Hopper M.L., 1996. SFE extraction of aflatoxins (B1, B2, G1, and G2) from corn and analysis by HPLC. J. Supercrit. Fluids 9(2), 118–121. https://doi.org/10.1016/0021-9673(92)85687-O
  24. Holcomb M., Wilson D.M., Trucksess M.W., Thompson H.C., 1992. Determination of aflatoxins in food products by chromatography. J. Chromatogr. A 624(1–2), 341–352.
  25. Jurga R., 2007a. Mykotoksyny w ziarnie zbóż, mące i pieczywie. Przegl. Piek. Cukier. 3, 4–8. https://doi.org/10.1016/S0896-8446(96)90007-8
  26. Jurga R., 2007b. Uwaga na mikotoksyny w paszach. Przegl. Zboż.-Młynar., 51(9), 39–41.
  27. Katerere D.R., Stockenström S., Shephard G.S., 2008. HPLC-DAD method for the determination of patulin in dried apple rings. Food Control 19(4), 389–392. https://doi.org/10.1016/j.foodcont.2007.04.015
  28. Klötzel M., Lauber U., Humpf H.-U., 2006. A new solid phase extraction clean-up method for the determination of 12 type A and B trichothecenes in cereals and cereal-based food by LC-MS/MS. Mol. Nutr. Food Res. 50(3), 261–269. https://doi.org/10.1365/s10337-005-0576-x
  29. Klötzel M., Schmidt S., Lauber U., Thielert G., Humpf H.-U., 2005. Comparison of Different Clean-Up Procedures for the Analysis of Deoxynivalenol in Cereal-Based Food and Validation of a Reliable HPLC Method. Chromatographia 62(1–2), 41–48. https://doi.org/10.1002/mnfr.200500234
  30. Kowalska A., Walkiewicz K., Kozieł P., Muc-Wierzgoń M., 2017. Aflatoxins: characteristics and impact on human health. Postęp. Hig. Med. Dosw. 71, 315–327. https://doi.org/10.5604/01.3001.0010.3816
  31. Kowalska G., Kowalski R., 2019. Badania pozostałości pestycydów w żywności pochodzenia roślinnego przy użyciu metody QuEChERs i technik chromatograficznych GC i HPLC z detektorem spektrometrii mas MS i MS/MS. Agron. Sci. 74(3), 99–112. https://doi.org/10.24326/as.2019.3.8
  32. Krska R., Baumgartner S., Josephs R., 2001. The state-of-the-art in the analysis of type-A and -B trichothecene mycotoxins in cereals. Fresenius J. Anal. Chem. 371(3), 285–299. https://doi.org/10.1007/s002160100992
  33. Krska R., Welzig E., Boudra H., 2007. Analysis of Fusarium toxins in feed. Anim. Feed Sci. Technol. 137(3–4), 241–264. https://doi.org/10.1016/j.anifeedsci.2007.06.004
  34. Langseth W., Rundberget T., 1998. Instrumental methods for determination of nonmacrocyclic trichothecenes in cereals, foodstuffs and cultures. J. Chromatogr. A 815(1), 103–121. https://doi.org/10.1016/S0021-9673(98)00388-4
  35. Lauren D.R., Jensen D.J., Smith W.A., 2006. Mycotoxin contamination in graded fractions of maize (Zea mays) in New Zealand. New Zeal. J. Crop Hortic. Sci. 34(1), 63–72. https://doi.org/10.1080/01140671.2006.9514389
  36. Liu H., Kong W., Liu C., Liu Q., Hu Y., Yang M., 2015. Rapid analysis and identification of multi-class mycotoxins in Morinda officinalis by UFLC-ESI-MS/MS. RSC Adv. 5(78), 63561–63571. https://doi.org/10.1039/C5RA10205G
  37. Lucci P., Derrien D., Alix F., Pérollier C., Bayoudh S., 2010. Molecularly imprinted polymer solid-phase extraction for detection of zearalenone in cereal sample extracts. Anal. Chim. Acta 672(1–2), 15–19. https://doi.org/10.1016/j.aca.2010.03.010
  38. Majors R.E., 2011. Solid-Phase Extraction. W: J. Pawliszyn, H.L. Lord (red.). Handbook of Sample Preparation. John Wiley & Sons, Hoboken, NJ, USA, 53–79. https://doi.org/10.1002/9780813823621.ch4
  39. Mateo J., Llorens A., Mateo R., Jiménez M., 2001. Critical study of and improvements in chromatographic methods for the analysis of type B trichothecenes. J. Chromatogr. A 918(1), 99–112. https://doi.org/10.1016/S0021-9673(01)00704-X
  40. Milanez T.V., Valente-Soares L.M., Baptista G.G., 2006. Occurrence of trichothecene mycotoxins in Brazilian corn-based food products. Food Control 17(4), 293–298. https://doi.org/10.1016/j.foodcont.2004.11.002
  41. Muro-Cach C.A., Stedeford T., Anasik M., 2004. Mycotoxins: mechanisms of toxicity and methods of detection for identifying exposed individuals. J. L. Use Environ. Law. 19(2), 537–557.
  42. Namieśnik J., Łukasik J., Jamrógiewicz Z., 1995. Pobieranie próbek środowiskowych do analizy. PWN, Warszawa, 278 ss.
  43. Nikonorow M., Urbanek-Karłowska B., 1987. Toksykologia żywności. PZWL, Warszawa.
  44. Pascale M., Panzarini G., Visconti A., 2012. Determination of HT-2 and T-2 toxins in oats and wheat by ultra-performance liquid chromatography with photodiode array detection. Talanta 89, 231–236. https://doi.org/10.1016/j.talanta.2011.12.017
  45. Pereira V.L., Fernandes J.O., Cunha S.C., 2014. Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends Food Sci. Technol. 36(2), 96–136. https://doi.org/10.1016/j.tifs.2014.01.005
  46. Pławińska-Czarnak J., Zarzyńska J., 2010. Mikotoksyny w żywności pochodzenia zwierzęcego. Mikol. Lek. 17(2), 128–133.
  47. Pokrzywa P., Cieślik E., Topolska K., 2007. Ocena zawartości mikotoksyn w wybranych produktach spożywczych. Żywn. Nauk. Technol. Jakość 14(3), 139–146.
  48. Quillien J.F., 2002. Mycotoxins. Institut National de la Recherche Agronomique, Flair Flow, France, 19–21.
  49. Radová Z., Holadová K., Hajšlová J., 1998. Comparison of two clean-up principles for determination of trichothecenes in grain extract. J. Chromatogr. A 829(1–2), 259–267. https://doi.org/10.1016/S0021-9673(98)00868-1
  50. Richard J.L., 2007. Some major mycotoxins and their mycotoxicoses – An overview. Int. J. Food Microbiol. 119(1–2), 3–10.
  51. Razzazi-Fazeli E., Rabus B., Cecon B., Böhm J., 2002. Simultaneous quantification of A-trichothecene mycotoxins in grains using liquid chromatography–atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A 968(1–2), 129–142. https://doi.org/10.1016/S0021-9673(02)00957-3
  52. Razzazi-Fazeli E., Reiter E.V., 2011. Sample preparation and clean up in mycotoxin analysis: principles, applications and recent development. W: S. De Saeger (red.), Determining mycotoxins and mycotoxigenic fungi in food and feed. Woodhead Publishing Limited, Cambridge, 37–70.
  53. Rozporządzenie Komisji (WE), 2002. Rozporządzenie Komisji Wspólnoty Europejskiej nr 178/2002 Parlamentu Europejskiego i Rady z dnia 28 stycznia 2002 r. ustanawiające ogólne zasady i wymagania prawa żywnościowego, powołujące Europejski Urząd ds. Bezpieczeństwa Żywności oraz ustanawiające procedury w zakresie bezpieczeństwa żywności (Dz.U. UE L 31 z 1.02.2002 ze zm. 07.08.2009 – 004.001).
  54. Rozporządzenie Komisji (WE), 2006. Rozporządzenie Komisji Wspólnoty Europejskiej nr 401/2006 z dnia 23 lutego 2006 r. ustanawiające metody pobierania próbek i analizy do celów urzędowej kontroli poziomów mikotoksyn w środkach spożywczych (Dz.U. UE L 70/12 z 9.03.2006).
  55. Rubert J., Dzuman Z., Vaclavikova M., Zachariasova M., Soler C., Hajslova J., 2012. Analysis of mycotoxins in barley using ultra high liquid chromatography high resolution mass spectrometry: Comparison of efficiency and efficacy of different extraction procedures. Talanta 99, 712–719. https://doi.org/10.1016/j.talanta.2012.07.010
  56. Schoental R., 1994. Mycotoxins in Food and the Plague of Athens. J. Nutr. Med. 4(1), 83–85. https://doi.org/10.3109/13590849409034541
  57. Schollenberger M., Lauber U., Jara H.T., Suchy S., Drochner W., Müller H.-M., 1998. Determination of eight trichothecenes by gas chromatography–mass spectrometry after sample clean-up by a two-stage solid-phase extraction. J. Chromatogr. A 815(1), 123–132. https://doi.org/10.1016/S0021-9673(98)00454-3
  58. Schothorst R., Jekel A., 2001. Determination of trichothecenes in wheat by capillary gas chromatography with flame ionisation detection. Food Chem. 73(1), 111–117. https://doi.org/10.1016/S0308-8146(00)00321-6
  59. Sellergren B., Esteban A.M., 2012. The Use of Molecularly Imprinted Polymers for Sampling and Sample Preparation. Handbook of Sample Preparation. John Wiley & Sons, Hoboken, NJ, USA, 445–473. https://doi.org/10.1002/9780813823621.ch23
  60. Seńczuk W., 2002. Toksykologia. Podręcznik dla studentów, lekarzy i farmaceutów. PZWL, Warszawa.
  61. Shephard G., 1998. Chromatographic determination of the fumonisin mycotoxins. J. Chromatogr. A 815(1), 31–39. https://doi.org/10.1016/S0021-9673(98)00187-3
  62. Shephard G., Berthiller F., Dorner J., Krska R., Lombaert G., Malone B., Maragos C., Sabino M., Solfrizzo M., Trucksess M., Egmond H. van, Whitaker T., 2009. Developments in mycotoxin analysis: an update for 2007–2008. World Mycotoxin J. 2(1), 3–21. https://doi.org/10.3920/WMJ2008.1095
  63. Soroka P.M., Cyprowski M., Szadkowska-Stańczyk I., 2008. Narażenie zawodowe na mykotoksyny w różnych gałęziach przemysłu. Med. Pr. 59(4), 333–345.
  64. Sospedra I., Blesa J., Soriano J.M., Mañes J., 2010. Use of the modified quick easy cheap effective rugged and safe sample preparation approach for the simultaneous analysis of type A- and B-trichothecenes in wheat flour. J. Chromatogr. A 1217(9), 1437–1440. https://doi.org/10.1016/j.chroma.2009.12.047
  65. Stecher G., Jarukamjorn K., Zaborski P., Bakry R., Huck C.W., Bonn G.K., 2007. Evaluation of extraction methods for the simultaneous analysis of simple and macrocyclic trichothecenes. Talanta 73(2), 251–257. https://doi.org/10.1016/j.talanta.2007.03.028
  66. Stępień M., Sokół-Leszczyńska B., Łuczak M., 2007. Mikotoksyny, produkty spożywcze a zdrowie człowieka. Postępy Mikrobiol. 46(2), 167–177.
  67. Stevenson D., 2000. Immuno-affinity solid-phase extraction. J. Chromatogr. B Biomed. Sci. Appl. 745(1), 39–48. https://doi.org/10.1016/S0378-4347(00)00204-8
  68. Stockenström S., Sydenham E.W., Thiel P.G., 1994. Determination of fumonisins in corn: Evaluation of two purification procedures. Mycotoxin Res., 10(1), 9–14. https://doi.org/10.1007/BF03192246
  69. Suchorzyńska M., Misiewicz A., 2009. Mikotoksynotwórcze grzyby fitopatogeniczne z rodzaju Fusarium i ich wykrywanie technikami PCR. Postęp. Mikrobiol. 48(3), 221–230.
  70. Tanaka T., Yoneda A., Inoue S., Sugiura Y., Ueno Y., 2000. Simultaneous determination of trichothecene mycotoxins and zearalenone in cereals by gas chromatography-mass spectrometry. J. Chromatogr. A 882(1–2), 23–28. https://doi.org/10.1016/S0021-9673(00)00063-7
  71. Trebstein A., Lauber U., Humpf H.-U., 2009. Analysis of Fusarium toxins via HPLC-MS/MS multimethods: matrix effects and strategies for compensation. Mycotoxin Res. 25(4), 201–213. https://doi.org/10.1007/s12550-009-0029-8
  72. Trucksess M.W., Weaver C.M., Oles C.J., Rump L.V., White K.D., Betz J.M., Rader J.I., 2007. Use of multitoxin immunoaffinity columns for determination of aflatoxins and ochratoxin A in ginseng and ginger. J. AOAC Int. 90, 1042–1049.
  73. Turner N.W., Subrahmanyam S., Piletsky S.A., 2009. Analytical methods for determination of mycotoxins: A review. Anal. Chim. Acta 632(2), 168–180. https://doi.org/10.1016/j.aca.2008.11.010
  74. Urraca J.L., Marazuela M.D., Merino E.R., Orellana G., Moreno-Bondi M.C., 2006a. Molecularly imprinted polymers with a streamlined mimic for zearalenone analysis. J. Chromatogr. A 1116(1–2). 127–134. https://doi.org/10.1016/j.chroma.2006.03.032
  75. Urraca J.L., Marazuela M.D., Moreno-Bondi M.C., 2006b. Molecularly imprinted polymers applied to the clean-up of zearalenone and α-zearalenol from cereal and swine feed sample extracts. Anal. Bioanal. Chem. 385(7), 1155–1161. https://doi.org/10.1007/s00216-006-0343-3
  76. Ustawa z dnia 25 sierpnia 2006 r. o bezpieczeństwie żywności i żywienia. 2006. Dz.U. 2006 nr 171 poz. 1225.
  77. Vargas E.A., Whitaker T.B., Dos Santos E.A., Slate A.B., Lima F.B., Franca R.C.A. 2006. Design of a sampling plan to detect ochratoxin A in green coffee. Food Addit. Contam. 23(1), 62–72. https://doi.org/10.1080/02652030500258656
  78. Wang L., Wang Z., Gao W., Chen J., Yang M., Kuang Y., Huang L., Chen S., 2013. Simultaneous determination of aflatoxin B1 and ochratoxin A in licorice roots and fritillary bulbs by solid-phase extraction coupled with high-performance liquid chromatography-tandem mass spectrometry. Food Chem. 138(2–3), 1048–1054. https://doi.org/10.1016/j.foodchem.2012.11.066
  79. Wang S., Kong W.J., Yang M.H., 2016. Simultaneous determination of 11 mycotoxins in malt by isotope internal standard-UPLC-MS/MS. Acta Pharm. Sin. 51, 110–115. http://jtp.cnki.net/bilingual/detail/html/YXXB201601020
  80. Weidenbörner M., 2001. Encyclopedia of food mycotoxins. Springer, Berlin, Germany, 52.
  81. Whitaker T.B., 2003. Standardisation of mycotoxin sampling procedures: an urgent necessity. Food Control 14(4), 233–237. https://doi.org/10.1080/02652030500241587
  82. Whitaker T.B., 2006. Sampling Foods for Mycotoxins. Food Addit. Contam. 23(1), 50–61. https://doi.org/10.1016/S0956-7135(03)00012-4
  83. Wilkes J.G., Sutherland J.B., 1998. Sample preparation and high-resolution separation of mycotoxins possessing carboxyl groups. J. Chromatogr. B Biomed. Sci. Appl. 717(1–2), 135–156. https://doi.org/10.1016/S0378-4347(97)00664-6
  84. Wróbel B., 2014. Zagrożenia zwierząt i ludzi toksynami grzybów pleśniowych zawartych w paszach i żywności. Woda, Śr., Obszar. Wiej. 14(3(47)), 159–176.
  85. Wu J., Zhao R., Chen B., Yang M., 2011. Determination of zearalenone in barley by high-performance liquid chromatography coupled with evaporative light scattering detection and natural occurrence of zearalenone in functional food. Food Chem. 126(3), 1508–1511. https://doi.org/10.1016/j.foodchem.2010.11.159
  86. Xing Y., Meng W., Sun W., Li D., Yu Z., Tong L., Zhao Y., 2016. Simultaneous qualitative and quantitative analysis of 21 mycotoxins in Radix Paeoniae Alba by ultra-high performance liquid chromatography quadrupole linear ion trap mass spectrometry and QuEChERS for sample preparation. J. Chromatogr. B 1031, 202–213. https://doi.org/10.1016/j.jchromb.2016.07.008
  87. Żakowska Z., Stobińska H., 2000. Mikrobiologia i higiena w przemyśle spożywczym. Wyd. Politechniki Łódzkiej, Łódź.
  88. Zawadzki K., 2006. Usuwanie ziaren porażonych mikotoksynami ważnym elementem procesu czyszczenia pszenicy. Przegl. Zboż.-Młynar. 50(6), 32.
  89. Zawadzki K., 2011. Mikotoksyny – zagrożeniem dla zdrowia ludzi i zwierząt, ale także dla wyników ekonomicznych sektora zbożowego i paszowego. Przegląd Zboż.-Młynar. 55(10), 2–3.
  90. Zhang S., Lu J., Wang S., Mao D., Miao S., Ji S., 2016. Multi-mycotoxins analysis in Pheretima using ultra-high-performance liquid chromatography tandem mass spectrometry based on a modified QuEChERS method. J. Chromatogr. B 1035, 31–41. https://doi.org/10.1016/j.jchromb.2016.09.022

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.