Abstract
Potted seedling plants (SP) and micro-propagated potted plants (MP) of swallow root (Decalepis hamiltonii)
were inoculated with mycorrhizal fungi (Glomus mosseae, Glomus fasciculatum and Glomus monosporum)
to find out their influence on quality of tubers and their flavour content. Respective arbuscular mycorrhizal
fungi (AMF) treatment in general supported better growth of SP and MP plants in terms of increased
plant height, number of nodes, number of leaves, number of tubers, and fresh weight of tubers at
harvesting stage. A maximum of 82.23% root specific flavour metabolite 2-hydroxy-4-methoxy benzaldehyde
(2H4MB) improvement (4.5 mg g-100) was found in tubers when MP plant of D. hamiltonii was given
50 g of G. mosseae treatment, followed by 71.43 and 20% improvement of 2H4MB for G. fasciculatum and
G. monosporum respectively. The novelty of the present invention is that it provides for the first time an efficient
method for improvement of growth and yield of flavour enhanced tubers of D. hamiltonii by using
AMF. The symbiosis of mycorrhizal fungi and swallow root would be of benefit for qualitative and quantitative
improvement of this endangered and endemic medicinally important climber.
References
Bais, H.P., George, J., Ravishankar, G.A. (2000). In vitro propagation of Decalepis hamiltonii Wight & Arn., an endangered shrub through axillary bud cultures. Curr. Sci. 79, 408–410.
Brundrett, M.C. (2002). Coevolution of roots and mycorrhizas of land plants. New Phytol. 154, 275–304.
Fedderman, N., Finlay, R., Boller, T., Elfstrand, M. (2010). Functional diversity in arbuscular mycorrhiza – the role of gene expression, phosphorus nutrition and symbiotic efficiency. Fung. Ecol. 3, 1–8.
Garg, N., Chandel, S. (2010). Arbuscular mycorrhizal networks: process and functions. A review. Agron. Sust. Dev., 30(3), 581–599.
Giridhar, P., Rajasekaran, T., Nagarajan, S., Ravishankar, G.A. (2004). Production of 2-hydroxy-4-methoxybenzaldehyde in roots of tissue culture raised and acclimatized plants of Decalepis hamiltonii Wight & Arn., an endangered shrub endemic to Southern India and evaluation of its performance vis-à-vis plants from natural habitat. Ind. J. Exp. Biol., 42, 106–110.
Giridhar, P., Rajasekaran, T., Ravishankar, G.A. (2005). Improvement of growth and root specific flavour compound 2-hydroxy-4-methoxy benzaldehyde of micropropagated plants of ecalepis hamiltonii Wight & Arn. under triacontanol treatment. Sci. Hort., 106, 228–236.
Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Ann. Rev. Phytopathol., 43, 205–227.
Hijri, M. (2016). Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza, 6, 209–214.
Jacob, K.C. (1937). An unrecorded economic product Decalepis hamiltonii W. and Arn., family Asclepidaceae. Madras Agric J., 25, 176.
Liu, J.N., Wu, L.J., Wei, S.G., Xiao, X., Su, C.X., Jiang, P., Song, Z.B., Wang, T., Yu, Z.L. (2007). Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice (Glycyrrhiza uralensis Fisch). Plant Growth Reg., 52, 29–39.
López-Ráez, J.A., Verhage, A., Fernández, I., Garcia, J.M., Azcon-Aguilar, C., Flors, V., Pozo, M.J. (2010). Hormonal and Transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J. Exp. Bot., 61, 2589–601.
Martínez-Medina, A., Roldá A., Albacete, A., Pascual, J.A. (2011). The Interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. Phytochemistry, 72, 223–229.
Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15, 473–497.
Murthi, P.B., Seshadri, T.R. (1941). A study of the chemical components of the root of Decalepis hamiltonii (Makaliveru). Part I. Chemical composition of the root. Proc Ind. Acad. Sci., 13, 221–232.
Nayar, R.C., Shetty, J.K.P., Mary, Z., Yoganrasimhan. (1978). Pharmacological studies of root of Decalepis hamiltonii W & Arn and comparison with Hemidesmus indicus (L.) R. Br. Proc. Indian Acad. Sci., 87(B), 37–48.
Parimalan, R., Mahendranath, G., Giridhar, P., Ravishankar, G.A. (2011). Abiotic elicitor mediated augmentation of annatto pigment production in standing crop of Bixa orellana L. Ind. J. Fund. App. Life Sci., 1(4), 229–236.
Paszkowski, U. (2006). A journey through signaling in arbuscular mycorrhizal symbioses. New Phytol., 172, 35–46.
Phadke, N.Y., Gholap, A.S., Ramakrishnan, K., Subbulakshmi, G. (1994). Essential oil of Decalepis hamiltonii as an antimicrobial agent. J. Food Sci. Technol., 31, 472–475.
Pradeep, M., Kiran, K., Giridhar, P. (2016). A biotechnological perspective towards improvement of Decalepis hamiltonii: potential applications of its tubers and bioactive compounds of nutriceuticals for value addition in: Biotechnological strategies for the conservation of medicinal and ornamental climbers. Part III. Springer Internat. Publ., 317–238.
Prasad, B.C.N., Gururaj, H.B., Kumar, V., Giridhar, P., Ravishankar, G.A. (2006). Valine pathway is more crucial than phenylpropanoid pathway in regulating capsaicin biosynthesis in capsicum frutescens Mill. J. Agr. Food. Chem., 54, 6660–6666.
Reddy, B.O., Giridhar, P., Ravishankar, G.A. (2001). In vitro rooting of Decalepis hamiltonii (Wight & Arn), an endangered shrub, by auxins and root promoting agents. Curr. Sci., 81, 1479–1482.
Sailo, G.L., Bhagyaraj, D.J. (2005). Influence of different AM fungi on the growth, nutrition and forskolin content of Coleus forskohlii. Mycol. Res., 109, 795–798.
Saini, R.K., Muthu, K., Akithadevi, Giridhar, P., Ravishankar, G.A. (2013). Augmentation of major isoflavones in Glycine max L. through the elicitor-mediated approach. Acta. Bot. Croat., 72(2), 311–322.
Schüßler, A., Shwarzott, D., Walker, C. (2001). A New fungal phylum, the glomeromycota: phylogeny and evolution. Mycol. Res., 105, 1413–1421.
Selvaraj, T., Sumitra, P. (2011). Effect of Glomus aggregatum and plant growth promoting rhizomicroorganisms on growth, nutrition and content of secondary metabolites
in Glycerhhiza glabra L. Ind. J. App. Pure Biol., 26, 283–290.
Smith, E.E., Facelli, E., Pope, S., Smith, F.A. (2010). Plant performance in stressful environments. Interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil, 326, 3–20.
Sohrabi, M., Mohammadi, H., Mohammadi, A.H. (2015). Influence of AM fungi, Glomus mosseae and Glomus intraradices on chickpea growth and root-rot disease caused by Fusarium solani f. sp. pisi under greenhouse conditions. J. Agr. Sci. Tech., 17, 1919–1929.
Tanwarm, A., Aggarwalam, A., Panwarm, V. (2013). Arbuscular mycorrhizal fungi and Trichoderma viride mediated Fusarium wilt control in tomato. Biocontr. Sci. Techn. 23, 485–498.
Tchabi, A., Coyne, D., Hountondji, F., Lawouin, L., Wiemken, A., Oehl, F. (2010). Efficacy of indigenous arbuscular mycorrhizal fungi for promoting white yam (Dioscorea rotundata) growth in West Africa. App. Soil Ecol., 45, 92–100.
van der Heijden, M.G.A., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., Sanders, I.R. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69–72.
Vázquez-Hernández, M.V., Arévalo-Galarza, L., Jaen-Contreras, D., Escamilla-García, J.L., Mora-Aguilera, A., Hernández-Castro, E., Cibrián-Tovar, J., Téliz-Ortiz, D. (2011). Effect of Glomus mosseae and Entrophospora colombiana on plant growth, production, and fruit quality of ‘Maradol’ papaya (Carica papaya L.). Sci. Horti., 128, 255–260.
Wealth of India (1952). A dictionary of Raw Materials. CSIR, New Delhi, India, 3, 24.
Wealth of India, (1990). A dictionary of Raw Materials. CSIR, New Delhi, India, 1, 161.
Downloads
Download data is not yet available.