Skip to main navigation menu Skip to main content Skip to site footer

Vol. 13 No. 4 (2014)

Articles

THE EFFECT OF SILICON APPLICATION AND TYPE OF MEDIUM ON YIELDING AND CHEMICAL COMPOSITION OF TOMATO

Submitted: November 27, 2020
Published: 2014-08-31

Abstract

Fertilization of plants with silicon is particularly justified in soilless culture in which the roots of plants cannot use silicon resources in the soil. Silicon is the only element that does not harm plants when taken up in excessive amounts and its use in plant fertilization improves the yielding ability of plants and their resistance to various stress factors. The effectiveness of silicon application in growing plants is strictly dependent on both the source of this element, plant species and cultivars. The aim of this study was to determine the effect of root application of colloidal silicon as well as of three types of growing media of different silica content and varying ability to release orthosilicate monomers (rockwool, sand, straw) on yield and chemical composition of greenhouse tomato. The research was conducted in greenhouse in the period 2008–2009. Tomato was grown in an extended growth cycle (22 clusters) using a drip irrigation and fertilization
system with closed nutrient solution circulation. Tomato plants fertigated with the nutrient solution enriched with silicon showed significantly higher total fruit yield (15.98 kg·plant-1) compare to plant grown in control treatments. In the studies not found significant differences in total and marketable yield as well as in mean fruit weight between plants grown in rockwool and straw mediums. The total fruit yield of tomato plants grown in sand was lower compared to rockwool-grown plants. The fruit of tomato grown in sand was shown to have more dry matter (5.52%), total sugars (2.58% FR.W.) and potassium (4.19% DW) compared to rockwool culture as well as significantly the highest amount of silicon. The leaves of tomato fertilized with the silicon-enriched nutrient solution contained more silicon as well as less manganese and zinc compared to control plants.

References

Antongiovanni M., Sargentini C., 1991. Variability in chemical composition of straws. Options Méditerranéennes, Série Séminaires, 16, 49–53.
Büchse A., Krajewski P., Kristensen K., Pilarczyk W., 2007. Trial setup and statistical analysis. Susvar Handbook, 11–12.
Commission Regulation (EC) No 790/2000. Of 14 April 2000 laying down the marketing standard for tomatoes. http://eurlex.europa.eu/LexUriServ/Lex UriServ.do ?uri=OJ:L:2000:095:0024:0029:EN:PDF
Cornelis J.T., Delvaux B., Georg R.B., Lucas L., Ranger J., Opfergelt S., 2011. Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review. Biogeosciences, 8, 89–112.
Crooks R., Prentice P., 2011. The benefits of silicon fertiliser for sustainably increasing crop productivity. Proceedings of the 5th International Conference on Silicon in Agriculture, Beijing, China, 151–174.
Currie H.A., Perry C.C., 2007. Silica in plants: biological, biochemical and chemical studies. Ann. Bot., 100, 1383–1389.
Datnoff L.E., Rodrigues F.A., 2005. The role of silicon in suppressing rice diseases. APSnet Futures, 2, 1–28.
Datnoff L.E., Snyder G.H., Korndörfer G.H., 2001. Silicon in agriculture. Stud. Plant Sci., 8. Amsterdam, The Netherlands Elsevier.
Dietzel M., 2000. Dissolution of silicates and the stability of polysilicic acid. Geochim. Cosmochim. Acta, 64, 3275–3281.
Dragišić Maksimović J., Bogdanović J., Maksimović V., Nikoli M., 2007. Silicon modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excess manganese. J. Plant Nutr. Soil Sci., 170, 739–744.
El Nashaar H.M., Banowetz, G.M., Peterson, C.J., Griffith, S.M., 2011. Elemental concentrations in Triticale straw, a potential bioenergy feedstock. Energy Fuels., 25, 1200–1205.
Epstein E., 1994. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci., 91, 11–17.
Epstein E., 2009. Silicon: its manifold roles in plants. Ann. Appl. Biol., 155, 155–160.
Górecki R.S., Danielski-Busch W., 2009. Effect of silicate fertilizers on yielding of greenhouse cucumber (Cucumis sativus L.) in container cultivation. J. Elementol., 14(1), 71–78.
Gruda N., Qaryouti M.M., Leonardi C., 2013. Growing media. Good agricultural practices for greenhouse vegetable crops. FAO Plant Prod. Protect. Paper, 217, 271–302.
Guevel M.H., Menzies J.G., Belanger R.R., 2007. Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. Eur. J. Plant Pathol., 119, 429–436.
Hodson M.J., White P.J., Mead A., Broadley M.R., 2005. Phylogenetic variation in the silicon composition of plants. Ann. Bot, 96, 1027–1046.
Hogendorp B.K., 2008. Effect on silicon-based fertilizer application on the development and reproduction of insect pests associated with greenhouse-grown crops. PhD Diss., University of Illinois, Urbana-Champaign, IL, USA.
Iler R.K., 1979. Chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry. John Wiley , New York.
Jarosz Z., 2006. Effect of different types of potassium fertilization on the yielding of greenhouse tomatoes grown in various substrates. Acta Sci. Pol., Hortorum Cultus, 5(1), 3–9
Jarosz Z., 2013. The effect of silicon application and type of substrate on yield and chemical composition of leaves of cucumber. J. Elem., 18(3), 403–414, DOI: 10.5601/jelem.2013.18.3.05
Jugdaohsingh R., Reffitt D.M., Oldham C., Day J.P., Fifield L.K., Thompson R., Powell J.J., 2000. Silica and aluminum bioavailability. Oligomeric but not monomeric silica prevents aluminum absorption in humans. Am. J. Clin. Nutr., 71, 944–949.
Junior L.A.Z., Fontez R.L.F., Nevez J.C.L., Korndorfer G.H., Avila V.T., 2010. Rice grown in nutrient solution with doses of manganese and silicon. R. Bras. Ci. Solo, 34, 1629–1639.
Kingston G., 2011. Cationic resin and plant bioassays to assess suitability of silicated fertilizers. Proceedings of The 5th International Conference on Silicon in Agriculture. Beijing, China, 82–88.
Kipp J.A., Wever G., de Kreij C., 2000. International substrate manual. Elsevier, The Netherlands.
Korndörfer G.H., Pereira H.S., 2011. Silicon testing, silicon fertilizer manufacturing techniques and standards. Proceedings of The 5th International Conference on Silicon in Agriculture. Beijing, China, 151–174
Korzeniowska M., 2008. Wpływ struktury uwodnionego krzemianu sodu jako spoiwa mas formierskich na własności żelu krzemionkowego w wysokich temperaturach. Rozpr. dokt., AGH im. Stanisława Staszica, Kraków.
Li P., Song A., Li Z., Fan F., Liang Y., 2012. Silicon ameliorates manganese toxicity by regulating manganese transport and antioxidant reactions in rice (Oryza sativa L.). Plant Soil, 354, 407–419.
Liang Y., Sun W., Zhu Y-G., Christie P., 2006. Mechanism of silicon-mediated alleviation of abiotic stesses in higher plants: A review. Environ. Poll., 20, 1–7.
Liu H., Wang J., Li H.S., Liao Z.W., 2011. The effect of different physical-chemical treatment on Si promoted-release of sand. Proceedings of The 5th International Conference on Silicon in Agriculture. China, 114–116.
Ma J.F., Takahashi E., 2002. Soil, fertilizer and plant silicon research in Japan. Elsevier.
Martin K.R., 2007. The chemistry of silica and its potential health benefits. J. Nutr. Health Aging., 11(2), 94–97.
Mitani N., Ma J.F., 2005. Uptake system of silicon in different plant species. J. Exp. Bot., 56(414), 1255–1261.
Nurzyński J., Jarosz Z., 2012. The nutrient content in substrates and leaves of greenhouse tomato. Acta Sci. Pol., Hortorum Cultus, 11(6), 35–45.
Nurzyński J., Jarosz Z., Michałojć Z., 2012. Yielding and chemical composition of greenhouse tomato fruit grown on straw and rockwool substrate. Acta Sci. Pol., Hortorum Cultus, 11(3), 79–89.
Nurzyński J., Michłojć Z., Jarosz Z., 2003. Przydatność podłoża z piasku w uprawie pomidora szklarniowego. Acta Sci. Pol., Hortorum Cultus, 2(2), 125–130.
Ostrowska A., Gawliński S., Szczubiałka Z., 1991. Metody analizy i oceny gleb i roślin. Inst. Ochrony Środowiska, Warszawa.
Pereira H.S., Korndorfer G.H., Vidal A., de Camargo M.S., 2004. Silicon sources for rice crop. Sci. Agric. (Piracicaba, Braz.), 61(5), 522–528.
PN-A-04019 1998. Oznaczanie zawartości witaminy C.
PN-90/A-75101/03. Oznaczanie zawartości suchej masy metodą wagową.
Raven J.A., Edwards D., 2001. Roots: Evolutionary origins and biogeochemical significance. J. Exp. Bot., 52, 381–401.
Raviv M., Wallach R., Silber A., Bar-Tal A., 2002. Substrates and their analysis. Hydroponic production of vegetables and ornamentals. Embryo Publications, Greece, 67.
Rogalla H., Römheld V., 2002. Role of leaf apoplast in silicon mediated manganese tolerance of Cucumis sativus L. Plant Cell Environ., 25, 549–555.
Rutkowska U., 1981. Wybrane metody badań składu i wartości odżywczej żywności. PZWL, Warszawa.
Sacała E., 2009. Role of silicon in plant resistance to water stress. J. Elementol., 14(3), 619–630.
Sanchez T.F., Garcia A.V., Ferre F.C., 2012. Effect of the application of silicon hydroxide on yield and quality of cherry tomato. J. Plant Nutr., 35(4), 567–590.
Savant N.K., Korndorfer G.H., Datnoff L.E., Snyder G.H., 1999. Silicon nutrition and sugarcane production: A review. J. Plant Nutr., 22(12), 1853–1903.
Sonneveld C., Voogt W., 2009. Plant nutrition of greenhouse crops. Springer Dordrecht Heidelberg, London, New York.
Stamatakis A., Papadantonakis N., Savvas D., 2003. Effects of silicone and salinity on fruit yield and quality of tomato grown hydroponically. Acta Hort., 609, 141–149.
Voogt W., Sonneveld C., 2001. Silicon in horticultural crops grown in soilless culture. Stud. Plant Sci., 8, 115–131.
Wolff S.A., Karoliussen I., Rohlow J., Strimbeck R., 2012. Foliar applications of silicon fertilisers inhibit powdery mildew development in greenhouse cucumber. J. Food Agricult. Environ., 10(1), 355–359.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.