Abstract
Silybum marianum (L.) Gaertn. (milk thistle) is plant species that has been utilized principally for medicinal purposes for more than 2000 years. Recently it was proposed for biomass production in marginal environments, but vegetative biomass compositional analyses had not been available so far. The study of plant morphology and biomass composition was conducted on three different S. marianum accessions grown under open field conditions. The results indicate that plant morphological traits show major differences between accessions: this suggests that the available natural variability can be further utilized in order to develop improved S. marianum cultivars. Biomass compositional analysis shows that extractives, ash, lignin and cellulose content are comparable to other herbaceous bioenergy crops and that these traits display only limited variability in the studied accessions. Hemicellulose fraction is composed only by xylans and its content appears averagely lower in comparison to other herbaceous biomasses. Interestingly, in S. marianum biomass total nitrogen content is lower if compared to other herbaceous species. The possible involvement of this specific biomass trait in S. marianum nitrogen utilization efficiency has to be further investigated.
References
- Afshar, R.K., Chaichi, M.R., Alipour, A., Jovini, M.A., Dashtaki, M., Hashemi, M. (2015). Potential of milk thistle for biomass production in semiarid regions. Crop Sci., 55, 1295–1301. DOI: 10.2135/cropsci2014.10.0678
- Andrzejewska, J., Sadowska, K., Mielcarek, S. (2011). Effect of sowing date and rate on the yield and flavonolignan content of the fruits of milk thistle (Silybum marianum L. Gaertn.) grown on light soil in a moderate climate. Ind. Crop. Prod., 33, 462–468. DOI: 10.1016/j.indcrop.2010.10.027
- Andrzejewska, J., Martinelli, T., Sadowska, K. (2015). Silybum marianum: non-medical exploitation of the species. Ann. Appl. Biol., 167, 285–297. DOI: 10.1111/aab.12232
- Domínguez, M.T., Montiel-Rozas, M.M., Madejon, P., Diaz, M.J., Madejon, E. (2017a). The potential of native species as bioenergy crops on trace-element contaminated Mediterranean lands. Sci. Total Environ., 590–591, 29–39. DOI: 10.1016/j.scitotenv.2017.03.018
- Domínguez, M.T., Madejon, P., Madejon, E., Bianco, M.J.D. (2017b). Novel energy crops for Mediterranean contaminated lands: valorization of Districhia viscosa and Silybum marianum biomass by pyrolysis. Chemosphere, 186, 968–976. DOI: 10.1016/j.chemosphere.2017.08.063
- Estaji, A., Souri, M.K., Omidbaigi, R. (2011). Evaluation of different levels of nitrogen and flower pruning on milk thistle (Silybum marianum L.) yield and fatty acids. Z. Arznei-Gewurzpfla, 16, 170–175.
- Estaji, A., Souri, M.K., Omidbaigi, R. (2016). Evaluation of Nitrogen and Flower Pruning Effects on Growth, Seed Yield and Active Substances of Milk Thistle. J. Essent. Oil-Bear. Plants, 19, 678–685. DOI: 10.1080/0972060X.2014.981592
- Gominho, J., Curt, M.D., Lourenço, A., Fernández, J., Pereira, H. (2018). Cynara cardunculus L. as a biomass and multi-purpose crop: a review of 30 years of research. Biomass Bioenerg., 109, 257–275. DOI: 10.1016/j.biombioe.2018.01.001
- Ibáñez, A.B., Bauer, S. (2014). Downscaled method using glass microfiber filters for the determination of Klason lignin and structural carbohydrates. Biomass Bioenerg., 68, 75–81. DOI: 10.1016/j.biombioe.2014.06.013
- ISMEA report (2013). “Piante officinali in Italia: un’istantanea della filiera e dei rapporti tra i diversi attori”. Available: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/6678 [date of access: 25.11.2020].
- Jakubowski, A.R., Jackson, R.D., Casler, M.D. (2017). Can biomass yield of switchgrass be increased without increasing nitrogen requirements? Crop Sci., 57, 2024–2031. DOI: 10.2135/cropsci2017.03.0193
- Kalamaras, S.D., Kotsopoulos, T.A. (2014). Anaerobic co-digestion of cattle manure and alternative crops for the substitution of maize in South Europe. Bioresour. Technol., 172, 68–75. DOI: 10.1016/j.biortech.2014.09.005
- Kuchelmeister, C., Bauer, S. (2015). Rapid Small-Scale Determination of Extractives in Biomass. Bioenerg. Res., 8, 68–76. DOI: 10.1007/s12155-014-9493-x
- Ledda, L., Deligios, P., Farci, R., Sulas, L. (2013). Biomass supply for energetic purposes from some Carduae species grown in a Mediterranean rainfed low input cropping system. Ind. Crop. Prod., 47, 218–226. DOI: 10.1016/j.indcrop.2013.03.013
- Martinelli, T., Andrzejewska, J., Salis, M., Sulas, L. (2015). Phenological growth stages of Silybum marianum according to the extended BBCH scale. Ann Appl. Biol., 166, 53–66. DOI: 10.1111/aab.12163
- Martinelli, T., Potenza, E., Moschella, A., Zaccheria, F., Benedettelli, S., Andrzejewska, J. (2016). Phenotypic evaluation of a milk thistle germplasm collection: fruit morphology and chemical composition. Crop Sci., 56, 3160–3172. DOI: 10.2135/cropsci2016.03.0162
- Martinelli, T. (2019). Identification of milk thistle shatter resistant mutant lines with altered lignocellulosic profile for the complete domestication of the species. Crop Sci., 59, 2119–2127. DOI: 10.2135/cropsci2019.02.0103
- Merrill, A.L., Watt, B.K. (1973). Energy Value of Foods: Basis and Derivation. In: Agriculture Handbook No. 74. ARS United States Department of Agriculture, Washington DC.
- Morazzoni, P., Bombardelli, E. (1995). Silybum marianum (Carduus marianus). Fitoterapia, 66, 3–42.
- Ram, G., Bhan, M.K., Gupta, K.K., Thaker, B., Jamwal, U., Pal, S. (2005). Variability pattern and correlation studies in Silybum marianum Gaertn. Fitoterapia, 76, 143–147. DOI: 10.1016/j.fitote.2004.10.006
- Shokrpour, M., Gigloo, M.T., Asghari, A., Bahrampour, S. (2011). Study of some agronomic attributes in milk thistle (Silybum marianum Gaertn.) ecotypes from Iran. J. Med. Plant. Res., 5, 2169–2174.
- Sluiter, J.B., Ruiz, R.O., Scarlata, C.J., Sluiter, A.D., Templeton, D.W. (2010). Compositional Analysis of Lignocellulosic Feedstocks. 1. Review and Description of Methods. J. Agric. Food Chem., 58, 9043–9053. DOI: 10.1021/jf1008023
- Smith, T., Kawa, K., Eckl, V., Johnson, J. (2016). Sales of Herbal Dietary Supplements in US Increased 7.5% in 2015 Consumers spent $6.92 billion on herbal supplements in 2015, marking the 12th consecutive year of growth. HerbalGram, 111, 67–73.
- Somerville, C., Youngs, H., Taylor, C., Davis, S.C., Long, S.P. (2010). Feedstocks for lignocellulosic biofuels. Science, 329, 790–792. DOI: 10.1126/science.1189268
- Sorek, N., Yeats, T.H., Szemenyei, H., Youngs, H., Somerville, C.R. (2014). The implications of lignocellulosic biomass chemical composition for the production of advanced biofuels. BioScience, 64, 192–201. DOI: 10.1093/biosci/bit037
- Sulas, L., Murgia, L., Ventura, A. (2008) Phytomass production from Silybum marianum for bioenergy. Opt. Méd., 79, 487–490.
- Toscano, G., Foppa Pedretti, E. (2009). Calorific value determination of solid biomass fuel by simplified method. J. Agric. Eng., 40, 1–6. DOI: 10.4081/jae.2009.3.1
- Wathelet, J.P., Iori, R., Leoni, O., Quinsac, A., Palmieri, S. (2004). Guidelines for glucosinolate analysis in green tissues used for biofumigation. Agroindustria, 3, 257–266.
- Williams, C.L., Emerson, R.M., Tumuluru J.S. (2017). Biomass compositional analysis for conversion to renewable fuels and chemicals. In: Biomass volume estimation and valorisation for energy, Tumuluru, J.S. (ed.). InTechOpen, London. DOI: 10.5772/65777
Downloads
Download data is not yet available.
-
Ewelina Jacygrad,
Agnieszka Ilczuk,
Monika Mikos,
Katarzyna Jagiełło-Kubiec,
EFFECT OF MEDIUM TYPE AND PLANT GROWTH REGULATORS ON THE in vitro SHOOT PROLIFERATION OF Cotinus coggygria Scop. ‘ROYAL PURPLE’
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 11 No. 5 (2012)
-
Włodzimierz Breś,
Artur Sztuka,
Agata Kozłowska,
RESPONSE OF CHRYSANTHEMUMS FROM TIME GROUP TO DIFFERENTIATED NITROGEN AND POTASSIUM FERTILIZATION IN CONTROLLED CULTIVATION
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 7 No. 1 (2008)
-
Barbara Skwaryło-Bednarz ,
Agnieszka Jamiołkowska,
Marek Kopacki,
Barbara Marcinek,
Mariusz Szmagara,
Izabela Kot,
Impact of N fertilization and cultivar on amaranth nutrients and soil health
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 23 No. 2 (2024)
-
Marek Kopacki,
Mariusz Szmagara,
Agnieszka Jamiołkowska,
Barbara Skwaryło-Bednarz,
Krystyna Rysiak,
Barbara Marcinek,
THE EFFECT OF FUNGAL ACTIVITY ON PHOTOSYNTHETIC PARAMETERS OF DIFFERENT CANNA CULTIVARS UNDER FIELD CONDITIONS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 3 (2019)
-
Halil Samet,
Yakup Çikili,
Aysun Çavuşoğlu,
Combined effects of excess boron and salinity on the growth and ionic imbalance of lavandin (Lavandula × intermedia) plant
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 22 No. 4 (2023)
-
Leila Samiei,
Mahboubeh Davoudi Pahnekolayi,
Zahra Karimian,
CLONAL PROPAGATION OF Gypsophila aretioides, AN IDEAL ROCK GARDEN PLANT SPECIES
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 1 (2019)
-
Małgorzata Podwyszyńska,
Mirosława Cieślińska,
ROOTING SHOOTS OF APPLE VARIETIES AND THEIR TETRAPLOIDS OBTAINED BY THE IN VITRO TECHNIQUE
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 17 No. 1 (2018)
-
Małgorzata Głosek-Sobieraj,
Bożena Cwalina-Ambroziak,
Agnieszka Waśkiewicz,
Kamil Kubiaczyk,
THE IMPACT OF TRIFENDER WP ON THE CONTENT OF CHLOROGENIC ACIDS IN POTATO PLANTS INFECTED BY Phytophthora infestans (Mont.) de Bary
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 2 (2019)
-
Romuald Doliński,
Krzysztof Kowalczyk,
FAST DIRECT REGENERATION OF PLANTS FROM NODAL EXPLANTS OF Stevia rebaudiana Bert.
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 5 (2019)
-
Małgorzata Malik,
Anna Bach,
MORPHOGENETIC PATHWAYS FROM Narcissus L. ‘CARLTON’ IN VITRO CULTURES OF PC STAGE FLOWER BUD EXPLANTS ACCORDING TO CYTOKININ AND AUXIN RATIOS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 15 No. 1 (2016)
<< < 11 12 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.