Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 5 (2022)

Articles

Effect of Actisil (Hydroplus™), organic supplements, and pH of the medium on the micropropagation of Vaccinium corymbosum

DOI: https://doi.org/10.24326/asphc.2022.5.3
Submitted: January 10, 2022
Published: 2022-10-28

Abstract

The effect of commercial Hydroplus™ Actisil, coconut water, coconut milk, and pH of the WPM medium
on the micropropagation of V. corymbosum ‘Liberty’ was studied. Three experiments were performed with
different concentrations of silicon Hydroplus™ Actisil (Si), coconut water (CW), coconut milk (CM), and
different pH as a stress factor. Si was applied at a concentration of 50, 100, 200 and 500 mg dm–3. The highest explant (2.02 cm) with the highest number of new shoots (1.91) and fresh weight (55.16 g) was obtained on WPM medium with the addition of Si in concentration 200 mg dm–3. In experiment 2, similar to 0.1 mg dm–3 zeatin explant growth was achieved when 15% CW was added to the WPM medium (2.13 cm). The use of CM did not have a positive effect on blueberry growth in vitro. The results of experiment 3 indicated that explants of blueberry better developed when pH was lower (5.0) with the highest number of new shoots (2.85) and fresh weight (95.67g). However, there were no significant differences in plant height between pH used. The application of 200 mg dm–3 Actisil benefits the negative effect of higher pH of the WPM medium on micropropagation of blueberry in case of plant height, fresh weight, and biochemical parameters (proline, malondialdehyde – MDA and catalase – CAT activity).

References

  1. Al-Khayri, J.M. (2010). Somatic embryogenesis of date palm (Phoenix dactylifera L.) improved by coconut water. Biotechnology, 9(4), 477–484. DOI: https://doi.org/10.3923/biotech.2010.477.484
  2. Barbosa, M.A.M., da Silva, M.H.L., Viana, G.D.M., Ferreira, T.R., de Carvalho Souza, C.L.F., Lobato, E.M.S.G., da Silva Lobato, A.K. (2015). Beneficial repercussion of silicon (Si) application on photosynthetic pigments in maize plants. Aust. J. Crop Sci., 9(11), 1113–1118.
  3. Baskaran, P., Velayutham, P., Jayabalan, N. (2009). In vitro regeneration of Melothria maderaspatana via indirect organogenesis. In Vitro Cell. Dev. Biol., Plant, 45(4), 407. https://doi.org./10.1007/s11627-008-9172-8 DOI: https://doi.org/10.1007/s11627-008-9172-8
  4. Bates, L.S., Waldren, R., Teare, I. (1973) Rapid determination of free pro-line for water-stress studies. Plant Soil, 39(1), 205–207. DOI: https://doi.org/10.1007/BF00018060
  5. Bhattacharya, S., Bandopadhyay, T.K., Ghosh, P.D. (2010). Somatic embryogenesis in Cymbopogon pendulus and evaluation of clonal fidelity of regenerants using ISSR marker. Sci. Hort., 123(4), 505–513. https://doi.org/10.1016/j.scienta.2009.10.011 DOI: https://doi.org/10.1016/j.scienta.2009.10.011
  6. Boase, M.R., Wright, S., McLeay, P.L. (1993). Coconut milk enhancement of axillary shoot growth in vitro of kiwifruit. N. Z. J. Crop Hortic. Sci., 21(2), 171–176. DOI: https://doi.org/10.1080/01140671.1993.9513764
  7. Brazelton, C. (2013). World blueberry acreage and production. North American Blueberry Council. Available online: http://www. chilealimentos. com/2013/phocadownload/Aprocesados_congelados/nabc_2012-world-blueberry-acreage-production. pdf [access: 16 March 2021].
  8. Costa, B.N.S., Rúbio, A., Chagas, E.A., Chagas, P.C., Pasqual, M., Vendrame, W.A. (2020). Influence of silicon and in vitro culture systems on the micropropagation and acclimatization of ‘Dwarf Cavendish’ banana. Acta Sci. Agron., e47490, 43. DOI: https://doi.org/10.4025/actasciagron.v43i1.47490
  9. Currie, H.A., Perry, C.C. (2007). Silica in plants: biological, biochemical and chemical studies. Ann. Bot., 100(7), 1383–1389. https://doi.org/10.1093/aob/mcm247. Avai- lable online: www.aob.oxfordjournals.org DOI: https://doi.org/10.1093/aob/mcm247
  10. Epstein, E. (1999). Silicon. Annu. Rev. Plant Biol., 50(1), 641–664. DOI: https://doi.org/10.1146/annurev.arplant.50.1.641
  11. Figiel-Kroczyńska, M., Ochmian, I. (2019). Effect of applying Actisil the quality of highbush blueberries (Vaccinium corymbosum L.). W: Badania i rozwój młodych naukowców w Polsce. Nauki przyrodnicze, Część I, Baran M., Nyćkowiak J. (red.). Młodzi Naukowcy, Poznań 2019, 27–32.
  12. Finn, C.E., Luby, J.J., Rosen, C.J., Ascher, P.D. (1991). Evaluation in vitro of blueberry germplasm for higher pH tolerance. J. Am. Soc. Hortic. Sci., 116(2), 312–316. DOI: https://doi.org/10.21273/JASHS.116.2.312
  13. Fira, A., Clapa, D., Badescu, C. (2008). Aspects regarding the in vitro propagation of highbush blueberry cultivar blue crop. Bulletin UASVM, Hortic., 65(1), 104–109.
  14. Gallegos-Cedillo, V.M., Álvaro, J.E., Capatos, T., Hachmann, T.L., Carrasco, G., Urrestarazu, M. (2018). Effect of pH and silicon in the fertigation solution on vegetative growth of blueberry plants in organic agriculture. HortScience, 53(10), 1423–1428. https://doi.org/10.21273/HORTSCI13342-18 DOI: https://doi.org/10.21273/HORTSCI13342-18
  15. Guo, Y.X., Zhao, Y.Y., Zhang, M., Zhang, L.Y. (2019). Development of a novel in vitro rooting culture system for the micropropagation of highbush blueberry (Vaccinium corymbosum) seedlings. Plant Cell Tiss. Org. Cult., 139(3), 615–620. DOI: https://doi.org/10.1007/s11240-019-01702-7
  16. Harkacz, O.M., Sr., Carnes D.L., Jr., Walker, W.A., III, (1997). Determination of periodontal ligament cell viability in the oral rehydration fluid Gatorade and milks of varying fat content. J. Endod., 23(11), 687–690. https://doi.org/10.1016/S0099-2399(97)80402-5 DOI: https://doi.org/10.1016/S0099-2399(97)80402-5
  17. Hunterlab. (2012). Measuring color using Hunter L, a, b versus CIE 1976 L*a*b*. AN 1005.00, pp.1–4. Available: www.hunterlab.com/an-1005b.pdf.
  18. Kamenidou, S., Cavins, T.J., Marek, S. (2008). Silicon supplements afect horticultural traits of greenhouse-produced ornamental sunflowers. HortScience, 43(1), 236–239. https://doi.org/10.21273/HORTSCI. 43.1.236 DOI: https://doi.org/10.21273/HORTSCI.43.1.236
  19. Kidd, P.S., Proctor, J. (2001). Why plants grow poorly on very acid soils: are ecologists missing the obvious? J. Exp. Bot., 52(357), 791–799. https://doi.org/10.1093/jexbot/52.357.791 DOI: https://doi.org/10.1093/jexbot/52.357.791
  20. Krupa-Małkiewicz, M., Calomme, M. (2021). Actisil application affects growth, flowering, and biochemical parameters in petunia in vitro and greenhouse. Plant Cell Tiss. Organ Cult., 1–11. https://doi.org/10.1007/s11240-021-02078-3 DOI: https://doi.org/10.1007/s11240-021-02078-3
  21. Krupa-Malkiewicz, M., Smolik, B. (2019). Alleviative effects of chitosan and ascorbic acid on Petunia × atkinsiana D. Don under salinity. Eur. J. Hortic. Sci., 84(6), 359–365. https://doi.org/10.17660/eJHS.2019/84.6.5 DOI: https://doi.org/10.17660/eJHS.2019/84.6.5
  22. Krupa-Malkiewicz, M., Smolik, B., Sędzik M. (2019). Influences of ascorbic acid and gibberellic acid in alleviating effects of salinity in Petunia under in vitro. Phyton. Int. J. Exp. Bot., 88, 15–23. DOI: https://doi.org/10.32604/phyton.2019.04670
  23. Lloyd, G., McCown, B. (1981). Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb. Proc. Int. Plant Prop. Soc., 30, 421–427.
  24. Lück, H. (1963). Catalase. In: Methods of enzymatic analysis, H.U. Bergmeyer (ed.). Verlag Chemie, New York–London, 885–888. DOI: https://doi.org/10.1016/B978-0-12-395630-9.50158-4
  25. Luyckx, M., Hausman, J.F., Lutts, S., Guerriero, G. (2017). Silicon and plants: current knowledge and technological perspectives. Front. Plant Sci., 8, 411. DOI: https://doi.org/10.3389/fpls.2017.00411
  26. Ma, J.F., Takahashi, E. (2002). Soil, fertilizer, and plant silicon research in Japan. Elsevier, Amsterdam. DOI: https://doi.org/10.1016/B978-044451166-9/50009-9
  27. Ma, Z., Ge, L., Lee, A.S., Yong, J.W.H., Tan, S.N., Ong, E.S. (2008). Simultaneous analysis of different classes of phytohormones in coconut (Cocos nucifera L.) water using high-performance liquid chromatography and liquid chromatography–tandem mass spectrometry after solid-phase extraction. Anal. Chim. Acta, 610(2), 274–281. https://doi.org/10.1016/j.aca.2008.01.045 DOI: https://doi.org/10.1016/j.aca.2008.01.045
  28. Mandlik, R., Thakral, V., Raturi, G., Shinde, S., Nikolić, M., Tripathi, D. K., Sonah, H. Deshmukh, R. (2020). Significance of silicon uptake, transport, and deposition in plants. J. Exp. Bot., 71(21), 6703–6718. DOI: https://doi.org/10.1093/jxb/eraa301
  29. Marino, S.R., Williamson, J.G., Olmstead, J.W., Harmon, P.F. (2014). Vegetative growth of three southern highbush blueberry cultivars obtained from micropropagation and softwood cuttings in two Florida locations. HortScience, 49(5), 556–561. https://doi.org/10.21273/HORTSCI.49.5.556 DOI: https://doi.org/10.21273/HORTSCI.49.5.556
  30. Martins, N., Gonçalves, S., Palma, T., Romano, A. (2011). The influence of low pH on in vitro growth and biochemical parameters of Plantago almogravensis and P. algarbiensis. Plant Cell Tiss. Organ Cult., 107(1), 113–121. https://doi.org/10.1007/s11240-011-9963-1 DOI: https://doi.org/10.1007/s11240-011-9963-1
  31. Morikawa, C.K., Saigusa, M. (2004). Mineral composition and accumulation of silicon in tissues of blueberry (Vaccinum corymbosus cv. Bluecrop) cuttings. Plant Soil, 258(1), 1–8. DOI: https://doi.org/10.1023/B:PLSO.0000016489.69114.55
  32. Ochmian, I., Błaszak, M., Lachowicz, S., Piwowarczyk, R. (2020). The impact of cultivation systems on the nutritional and phytochemical content, and microbiological contamination of highbush blueberry. Sci. Rep. 10(1), 1–14. DOI: https://doi.org/10.1038/s41598-020-73947-8
  33. Ochmian, I., Grajkowski, J., Skupień, K. (2010). Effect of substrate type on the field performance and chemical composition of highbush blueberry cv. Patriot. Agri. Food Sci., 19, 69–80. DOI: https://doi.org/10.2137/145960610791015078
  34. Pavlovkin, J., Pal’ove-Balang, P., Kolarovič, L., Zelinová, V. (2009). Growth and functional responses of different cultivars of Lotus corniculatus to aluminum and low pH stress. J. Plant Physiol., 166(14), 1479–1487. https://doi.org/10.1016/j.jplph.2009.03.005 DOI: https://doi.org/10.1016/j.jplph.2009.03.005
  35. Peixe, A., Raposo, A., Lourenço, R., Cardoso, H., Macedo, E. (2007). Coconut water and BAP successfully replaced zeatin in olive (Olea europaea L.) micropropagation. Sci. Hortic., 113(1), 1–7. https://doi.org/10.1016/j.scienta.2007.01.011 DOI: https://doi.org/10.1016/j.scienta.2007.01.011
  36. Pierik, R.L.M. (1997). In vitro culture of higher plants. Springer Science & Business Media, The Netherlands, 65–66. DOI: https://doi.org/10.1007/978-94-017-1854-7
  37. Piwowarczyk, B., Tokarz, K., Kamińska, I. (2016). Responses of grass pea seedlings to salinity stress in in vitro culture conditions. Plant Cell Tiss. Org. Cult., 124(2), 227–240. https://doi.org/10.1007/s11240-015-0887-z DOI: https://doi.org/10.1007/s11240-015-0887-z
  38. Richmond, K.E., Sussman, M. (2003). Got silicon? The non-essential beneficial plant nutrient. Curr. Opin. Plant Biol., 6(3), 268–272. DOI: https://doi.org/10.1016/S1369-5266(03)00041-4
  39. Rodrigues, F.A., Alves Lara Silva Rezende, R., Rodrigues Soares, J.D., Pasqual, M., de Oliveira e Silva, S., (2017). Application of silicon sources in yam (Dioscorea spp.) micropropagation. Austral. J. Crop Sci., 11(11). DOI: https://doi.org/10.21475/ajcs.17.11.11.pne685
  40. Ružić, D., Vujović, T., Libiakova, G., Cerović, R., Gajdošova, A. (2012). Micropropagation in vitro of highbush blueberry (Vaccinium corymbosum L.). J. Berry Res., 2(2), 97–103. https://doi.org/10.3233/JBR-2012-030 DOI: https://doi.org/10.3233/JBR-2012-030
  41. Sahebi, M., Hanafi, M.M., Siti Nor Akmar, A., Rafii, M.Y., Azizi, P., Tengoua, F., Nurul Mayzaitul Azwa, J., Shabanimofrad, M. (2015). Importance of silicon and mechanisms of biosilica formation in plants. BioMed Res Int., 16. DOI: https://doi.org/10.1155/2015/396010
  42. Sahebi, M., Hanafi, M.M., Azizi, P. (2016). Application of silicon in plant tissue culture. In Vitro Cell. Dev. Biol. Plant, 52(3), 226–232. https://doi.org/10.1007/s11627-016-9757-6 DOI: https://doi.org/10.1007/s11627-016-9757-6
  43. Schuchovski, C.S., Biasi, L.A. (2019). In vitro establishment of ‘Delite’ rabbiteye blueberry microshoots. Horticulturae, 5(1), 24. DOI: https://doi.org/10.3390/horticulturae5010024
  44. Sędzik, M., Smolik, B., Krupa-Małkiewicz, M. (2019). Effect of nicotinamide in alleviating stress caused by lead in spring barley seedling. J. Elem., 24(1), 281–291. https://doi.org/10.5601/jelem.2018.23.2.1582 DOI: https://doi.org/10.5601/jelem.2018.23.2.1582
  45. Sivanesan, I., Park, S.W. (2014). The role of silicon in plant tissue culture. Front. Plant Sci., 5, 571. https://doi.org/10.3389/fpls.2014.00571 DOI: https://doi.org/10.3389/fpls.2014.00571
  46. Sommer, M., Kaczorek, D., Kuzyakov, Y., Breuer, J. (2006). Silicon pools and fluxes in soils and landscapes – a review. J. Plant Nut. Soil Sci., 169(3), 310–329. https://doi.org/10.1002/jpln.20052198. DOI: https://doi.org/10.1002/jpln.200521981
  47. Sudhakar, C., Lakshim, A., Giridarakumar, S. (2001). Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci., 161, 613–619. https://doi.org/10.1016/S0168-9452(01)00450-2 DOI: https://doi.org/10.1016/S0168-9452(01)00450-2
  48. Tsuda, H., Kunitake, H., Aoki, Y., Oyama, A., Tetsumura, T., Komatsu, H., Yoshioka, K. (2014). Efficient in vitro screening for higher soil pH adaptability of intersectional hybrids in blueberry. HortScience, 49(2), 141–144. https://doi.org/10.21273/HORTSCI.49.2.141 DOI: https://doi.org/10.21273/HORTSCI.49.2.141
  49. Yong, J.W., Ge, L., Ng, Y.F., Tan, S.N. (2009). The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules, 14(12), 5144–5164. DOI: https://doi.org/10.3390/molecules14125144

Downloads

Download data is not yet available.