Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 2 (2022)

Articles

Influence of various types of light on growth and physicochemical composition of blueberry (Vaccinium corymbosum L.) leaves: Influence of light on blueberry growth

DOI: https://doi.org/10.24326/asphc.2022.2.8
Submitted: May 12, 2021
Published: 2022-04-29

Abstract

It is important to use light that has a positive effect on plants. For plant growers, achieving the lowest possible cost of shrub production is crucial. We investigated the influence of light (white and violet LEDs as well as fluorescent white and red light) on the rooting and growth of blueberry cuttings (V. corymbosum L.) 'Aurora' and 'Huron'. Blueberry cuttings (4 cm tall) were planted into boxes with peat, which were placed in a phytotron at 22 °C and illuminated for 16 hours a day. The plants died under the red fluorescent light source and, therefore, we discontinued its use. The other three light sources had a positive effect on plant growth and development. The light source had little effect on the content of macroelements in the leaves. Plants grown under white fluorescent and white LED light did not significantly differ in the height (22.0-25.8 cm), proline (4.67-7.23 μmol g-1), and polyphenol content (4987-5212 mg 100 g-1). In both cultivars, the violet LED light reduced plant growth and increased the content of polyphenols (6,448 mg 100 g-1) and proline (8.11-9.06 μmol g-1) in the leaves, which may indicate abiotic stress. 

During the rooting of highbush blueberry cuttings, it is advisable to use white LED light. It has a positive economic impact on crop production due to low electricity consumption and it benefits the environment by eliminating mercury. The plant quality is similar to that of fluorescent white light.

References

  1. Ashrafa, M., Foolad, M.R. (2016). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot., 59(2), 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006 DOI: https://doi.org/10.1016/j.envexpbot.2005.12.006
  2. Bae, G., Choi, G. (2008). Decoding of lights signals by plants phytochromes and their interacting proteins. Annu. Rev. Plant Biol., 59, 281–311. DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092859
  3. Bal, J.J. (1997). Blueberry culture in greenhouses, tunnels, and under rain covers. Acta Hortic., 446, 327–331. DOI: https://doi.org/10.17660/ActaHortic.1997.446.48
  4. Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39(1), 205–207. DOI: https://doi.org/10.1007/BF00018060
  5. Bourget, C.M. (2008). An introduction to light-emitting diodes. HortScience, 43(7), 1944–1946. https://doi.org/10.21273/HORTSCI.43.7.1944 DOI: https://doi.org/10.21273/HORTSCI.43.7.1944
  6. Barnes, C., Bugbee, B. (1992). Morphological responses of wheat to blue light. J. Plant. Physiol., 139, 339–342. DOI: https://doi.org/10.1016/S0176-1617(11)80347-0
  7. Bhoomika K, Pyngrope S, Dubey RS (2013). Differential responses of antioxidant enzymes to aluminum toxicity in two rice (Oryza sativa L.) cultivars with marked presence and elevated activity of Fe SOD and enhanced activities of Mn SOD and catalase in aluminum tolerant cultivar. Plant Growth Regul., 71(3), 235–252. DOI: https://doi.org/10.1007/s10725-013-9824-5
  8. Brazelton, C. (2013). World blueberry acreage and production. North American Blueberry Council. Available online: http://www. chilealimentos. com/2013/phocadownload/Aprocesados_congelados/nabc_2012-world-blueberry-acreage-production.pdf [access: 4.05.2020].
  9. Brazelton, C., Young, K. (2017). World blueberry statistics and global market analysis. US Highbush Blueberry Council Folsom CA. https://static1.squarespace.com/static/581373dbe4fcb5675436dbf7/t/58dd0a421b10e38a0a19447f/1490881114392/Cort+Brazelton+GBC2017.pdf [access: 3.02.2020].
  10. Burgie, E.S., Bussell, A.N., Walker, J.M., Dubiel, K., Vierstra, R.D. (2014). Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome. Proc. Natl. Acad. Sci., 111(28), 10179–10184. https://doi.org/10.1073/pnas.1403096111 DOI: https://doi.org/10.1073/pnas.1403096111
  11. Cao, G., Sofic, E., Prior, R.L. (1996). Antioxidant capacity of tea and common vegetables. J. Agric. Food. Chem., 44, 3426–3431. DOI: https://doi.org/10.1021/jf9602535
  12. Chen, W., Cen, W., Chen, L., Di, L., Li, Y., Guo, W. (2012). Differential sensitivity of four highbush blueberry (Vaccinium corymbosum L.) cultivars to heat stress. Pak. J. Bot., 44(3), 853–860.
  13. Chiang, C., Bånkestad, D., Hoch, G. (2020). Reaching natural growth: light quality effects on plant performance in indoor growth facilities. Plants, 9(10), 1273. https://doi.org/10.3390/plants9101273 DOI: https://doi.org/10.3390/plants9101273
  14. Değirmencioğlu, N., Gürbüz, O., Karatepe, G.E., Irkin, R. (2017). Influence of hot air drying on phenolic compounds and antioxidant capacity of blueberry (Vaccinium myrtillus) fruit and leaf. J. Appl. Bot. Food. Qual., 90, 115–125. https://doi.org/10.5073/JABFQ.2017.090.014
  15. Demotes-Mainard, S., Péron, T., Corot, A., Bertheloot, J., Le Gourrierec, J., Pelleschi-Travier, S., Crespel, L., Morel, P., Huché-Thélier, L., Boumaza, R., Vian, A., Guérin, V., Leduc, N., Sakr, S. (2016). Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot., 121(1), 4–21. http://dx.doi.org/10.1016/j.envexpbot.2015.05.010 DOI: https://doi.org/10.1016/j.envexpbot.2015.05.010
  16. Eck, P. (1988). Blueberry Science. Rutgers University Press, New Brunswick.
  17. FAO UN (Food and Agriculture Organization of the United Nations). (2018). World Food and Agriculture Statistical Pocketbook 2018. Food supply, Crop production 26. http://www.fao.org/3/CA1796EN/ca1796en.pdf [access: 27.02.2020].
  18. Galvão, VC., Fankhauser, C. (2015). Sensing the light environment in plants: photoreceptors and early signaling steps. Curr. Opin. Neurobiol., 34, 46–53. https://doi.org/10.1016/j.conb.2015.01.013 DOI: https://doi.org/10.1016/j.conb.2015.01.013
  19. Glonek, J., Komosa, A. (2006). The effect of fertigation on the nutrient status and yield of highbush blueberry cv. Bluecrop. Acta Hortic., 715, 371–374. https://doi.org/10.17660/ActaHortic.2006.715.55 DOI: https://doi.org/10.17660/ActaHortic.2006.715.55
  20. Głowacka, B. (2002). Wpływ barwy światła na ukorzenianie sadzonek pędowych pomidora (Lycopersicon esculentum Mill.). Acta Sci. Pol. Hortorum Cultus, 1(2), 83–91.
  21. Gupta, S.D., Jatothu, B. (2013). Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant. Biotechnol. Rep., 7(3), 211–220. https://doi.org/10.1007/s11816-013-0277-0 DOI: https://doi.org/10.1007/s11816-013-0277-0
  22. Hahn, E.J., Kozai, T., Paek, K.Y. (2000). Blue and red light-emitting diodes with or without sucrose and ventilation affect in vitro growth of Rehmannia glutinosa plantlets. J. Plant. Biol., 43(4), 247–250. DOI: https://doi.org/10.1007/BF03030425
  23. Hancock, F.J. (2011). Blueberry plant denominated “Huron” (United States Plant Patent Hancock USOOPP21777P3. Patent No.: US PP21,777 P3. Date of patent: Mar. 15, 2011. Latin Name: Vaccinium corymbosum. Varietal Denomination: Huron. United States Patent and Trademark Office. https://patentimages.storage.googleapis.com/ce/6f/4e/174a266bc33184/USPP21777.pdf [access: 12.07.2021].
  24. Hanson, E.J. (2006). Nitrogen fertilization of highbush blueberry. Acta Hortic., 715, 347–351. https://doi.org/10.17660/ActaHortic.2006.715.51 DOI: https://doi.org/10.17660/ActaHortic.2006.715.51
  25. Hogewoning, S.W., Trouwborst, G., Maljaars, H., Poorter, H., van Ieperen, W., Harbinson, J. (2010). Blue light dose – responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot. 61(11), 3107–3117. https://doi.org/10.1093/jxb/erq132 DOI: https://doi.org/10.1093/jxb/erq132
  26. Holmes, M.G., Smith, H. (1977). The function of phytochrome in the natural environment. II. The influence of vegetation canopies on the spectral energy distribution of natural daylight. Photochem. Photobiol., 25(6), 539–545. DOI: https://doi.org/10.1111/j.1751-1097.1977.tb09125.x
  27. Hung, C.D., Hong, C.H., Kim, S.K., Lee, K.H., Park, J.Y., Nam, M.W., Choi, D.H., Lee, H.I. (2016). LED light for in vitro and ex vitro efficient growth of economically important highbush blueberry (Vaccinium corymbosum L.). Acta Physiol. Plant., 38(6), 152. https://doi.org/10.1007/s11738–016-2164-0.kc DOI: https://doi.org/10.1007/s11738-016-2164-0
  28. Hunterlab (2012). Measuring Color using Hunter L, a, b versus CIE 1976 L*a*b*. AN 1005.00: 1–4. www.hunterlab.com/an-1005b.pdf, file:///C:/Users/Dell/Downloads/an-1005b.pdf [access: 6.05.2020].
  29. IUNG (Institute of Soil Science and Plant Cultivation). (1972). Methods of laboratory tests in chemical laboratories. Part II. The study of plant material. IUNG Puławy, 25–83.
  30. Johkan, M., Shoji, K., Goto, F., Hashida, S.N., Yoshihara, T. (2010). Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. Hort. Sci., 45(12), 1809–1814. https://doi.org/10.21273/HORTSCI.45.12.1809 DOI: https://doi.org/10.21273/HORTSCI.45.12.1809
  31. Kami, C., Lorrain, S., Hornitschek, P., Fankhausser, C. (2010). Light regulated plant growth and development. Curr. Top. Dev. Biol., 91, 29–66. https://doi.org/10.1016/S0070-2153(10)91002-8 DOI: https://doi.org/10.1016/S0070-2153(10)91002-8
  32. Kamiya, A., Ikegami, I., Hase, E. (1981). Effects of light on chlorophyll formation in cultured tobacco cells I. Chlorophyll accumulation and phototransformation of protochlorophyll(ide) in callus cells under blue and red light. Plant. Cell. Physiol., 22, 1385–1396. DOI: https://doi.org/10.1093/oxfordjournals.pcp.a076291
  33. Kim, H.H., Wheeler, R.M., Sager, J.C., Yorio, N.C., Goins, G.D. (2005). Light-emitting diodes as an illumination source for plants: a review of research at Kennedy Space Center. Habitation 10(2), 71–78. DOI: https://doi.org/10.3727/154296605774791232
  34. Klamkowski, K., Treder, W., Treder, J., Puternicki, A., Lisak, E. (2012). Wpływ doświetlania lampami sodowymi i led na aktywność fotosyntetyczną oraz wzrost roślin pomidora. Pr. Inst. Elektrotech., 256, 75–86.
  35. Komosa, A. (2007). Guide values and soil nutrient contents of highbush blueberry (Vaccinium co­rymbosum L.) plantations in Poland. Int. Conf. Vaccinium ssp. and Less Known Small Fruits: Cultivation and Health Benefit. Slovak Academy of Sciences, Nitra, pp. 29–30.
  36. Kong, Y., Stasiak, M., Dixon, M.A., Zheng, Y. (2018). Blue light associated with low phytochrome activity can promote elongation growth as shade-avoidance response: a comparison with red light in four bedding plant species. Environ. Exp. Bot., 155, 345–359. DOI: https://doi.org/10.1016/j.envexpbot.2018.07.021
  37. Kozai, T. (2016). Why LED Lighting for Urban Agriculture? In: Kozai T., Fujiwara K., Runkle E. (eds), LED lighting for urban agriculture. Springer, Singapore. pp. 3–18. https://doi.org/10.1007/978-981-10-1848-0_1 DOI: https://doi.org/10.1007/978-981-10-1848-0_1
  38. Krupa-Małkiewicz, M., Kruczek, A., Pelc, J., Smolik, B., Ochmian, I. (2018). Alleviating effects of ascorbic acid on lead toxicity in goji (Lycium Barbarum L.) in vitro. Folia Pomer. Univ. Technol. Stetin., Agric. Aliment. Pisc. Zootech., 340(45)1, 55–64. DOI: https://doi.org/10.21005/AAPZ2018.45.1.06
  39. Krupa-Małkiewicz, M., Smolik, B., Sędzik, M. (2019). Influences of ascorbic acid and gibberellic acid in alleviating effects of salinity in petunia under in vitro. Phyton-Int. J. Exp. Bot., 88(1), 15–23. DOI: https://doi.org/10.32604/phyton.2019.04670
  40. Kurilčik, A., Miklušytė-Čanova, R., Dapkūnienė, S., Žilinskaitė, S., Kurilčik, G., Tamulaitis, G., Duchovskis, P., Žukauskas, A. (2008). In vitro culture of Chrysanthemum plantlets using light-emitting diodes. Cent. Eur. J. Biol., 3(2), 161–167. https://doi.org/10.2478/s11535-008-0006-9 DOI: https://doi.org/10.2478/s11535-008-0006-9
  41. Li, C., Zhou, H.M. (2011). The role of manganese superoxide dismutase in inflammation defense. Enzyme. Res., 387176, 1–6. https://doi.org/10.4061/2011/387176 DOI: https://doi.org/10.4061/2011/387176
  42. Li, C., Feng, J., Huang, W.Y., An, X.T. (2013). Composition of polyphenols and antioxidant activity of rabbiteye blueberry (Vaccinium ashei) in Nanjing. J. Agric. Food Chem., 61(3), 523–531. https://doi.org/10.1021/jf3046158 DOI: https://doi.org/10.1021/jf3046158
  43. Liang, X., Zhang, L., Natarajan, S.K., Becker, D.F. (2013). Proline mechanisms of stress survival. Antioxid. Redox Signal, 19(9), 998–1011. https://doi.org/10.1089/ars.2012.507 DOI: https://doi.org/10.1089/ars.2012.5074
  44. Lityński, T., Jurkowska, H., Gorlach, E. (1976). Chemical analysis of soil. PWN, Warszawa, 135–143.
  45. Massa, G.D., Kim, H.H., Wheeler, R.M., Mitchell, C.A. (2008). Plant productivity in response to led lighting. Hort. Sci. 43(7), 1951–1956. https://doi.org/10.21273/HORTSCI.43.7.1951 DOI: https://doi.org/10.21273/HORTSCI.43.7.1951
  46. Mengxi, L., Zhigang, X., Yang, Y., Yijie, F. (2011). Effects of different spectral lights on Oncidium PLBs induction, proliferation, and plant regeneration. Plant Cell Tiss Org 106(1), 1–10. https://doi.org/10.1007/s11240-010-9887-1 DOI: https://doi.org/10.1007/s11240-010-9887-1
  47. Mijowska, K., Ochmian, I., Oszmiański, J. (2016). Impact of cluster zone leaf removal on grapes cv. Regent polyphenol content by the UPLC-PDA/MS method. Molecules, 21(12), 1688. https://doi.org/10.3390/molecules21121688 DOI: https://doi.org/10.3390/molecules21121688
  48. Morrow, R.C. (2008). LED lighting in horticulture. HortScience, 43(7), 1947–1950. https://doi.org/10.21273/HORTSCI.43.7.1947 DOI: https://doi.org/10.21273/HORTSCI.43.7.1947
  49. Ochmian, I. (2012). The impact of foliar application of calcium fertilizers on the quality of highbush blueberry fruits belonging to the ‘Duke’ cultivar. Not. Bot. Horti Agrobot. Cluj-Napoca, 40(2), 163–169. DOI: https://doi.org/10.15835/nbha4028058
  50. Ochmian, I., Kozos, K., Chełpiński, P., Szczepanek, M. (2015). Comparison of berry quality in highbush blueberry cultivars grown according to conventional and organic methods. Turk. J. Agric. For., 39(2), 174–181. https://doi.org/10.3906/tar-1404-18 DOI: https://doi.org/10.3906/tar-1404-18
  51. Ochmian, I., Kozos, K., Jaroszewska, A., Malinowski, R. (2021). Chemical and enzymatic changes of different soils during their acidification to adapt them to the cultivation of highbush blueberry. Agronomy 11(1), 44. https://doi.org/10.3390/agronomy11010044 DOI: https://doi.org/10.3390/agronomy11010044
  52. Ochmian, I., Kubus, M., Dobrowolska, A. (2013). Description of plants and assessment of chemical properties of three species from the Amelanchier genus. Dendrobiology, 70, 59–64. http://dx.doi.org/10.12657/denbio.070.006 DOI: https://doi.org/10.12657/denbio.070.006
  53. Ochmian, I., Malinowski, R., Kubus, M., Malinowska, K., Sotek, Z., Racek, M. (2019a). The feasibility of growing highbush blueberry (V. corymbosum L.) on loamy calcic soil with the use of organic substrates. Sci. Hortic., 257, 108690. https://doi.org/10.1016/j.scienta.2019.108690 DOI: https://doi.org/10.1016/j.scienta.2019.108690
  54. Ochmian, I., Oszmiański, J., Jaśkiewicz, B., Szczepanek, M. (2018). Soil and highbush blueberry responses to fertilization with urea phosphate. Folia Hortic., 30(2), 295–305. https://doi.org/10.2478/fhort-2018-0025 DOI: https://doi.org/10.2478/fhort-2018-0025
  55. Ochmian, I., Oszmiański, J., Lachowicz, S., Krupa-Małkiewicz, M. (2019). Rootstock effect on physico-chemical properties and content of bioactive compounds of four cultivars Cornelian cherry fruits. Sci. Hortic., 256, 108588. https://doi.org/10.1016/j.scienta.2019.108588 DOI: https://doi.org/10.1016/j.scienta.2019.108588
  56. Ohtake, N., Ishikura, M., Suzuki, H., Yamori, W., Goto, E. (2018). Continuous irradiation with alternating red and blue light enhances plant growth while keeping nutritional quality in lettuce. HortScience, 53(12), 1804–1809. https://doi.org/10.21273/HORTSCI13469-18 DOI: https://doi.org/10.21273/HORTSCI13469-18
  57. Olle, M., Viršile, A. (2013). The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agric. Food Sci., 22(2), 223–234. DOI: https://doi.org/10.23986/afsci.7897
  58. Oszmiański, J., Wojdyło, A., Gorzelany, J., Kapusta, I. (2011). Identification and characterization of low molecular weight polyphenols in berry leaf extracts by HPLC-DAD and LC-ESI/MS. J Agric Food Chem 59(24), 12830–12835. https://doi.org/10.1021/jf203052j DOI: https://doi.org/10.1021/jf203052j
  59. Pennisi, G., Blasioli, S., Cellini, A., Maia, L., Crepaldi, A., Braschi, I., Gianquinto, G. (2019). Unraveling the role of red: blue LED lights on resource use efficiency and nutritional properties of indoor grown sweet basil. Front. Plant Sci., 10, 305. https://doi.org/10.3389/fpls.2019.00305 DOI: https://doi.org/10.3389/fpls.2019.00305
  60. Pilarski, J., Kocurek, M. (2014). Dystrybucja promieniowania w roślinach. Pr. Inst. Elektrotech., 267, 109–120.
  61. Piljac-Žegarac, J., Belščak, A., Piljac, A. (2009). Antioxidant capacity and polyphenolic content of blueberry (Vaccinium corymbosum L.) leaf infusions. J. Med. Food, 12(3), 608–614.
  62. Pliszka, K. (2002). Borówka wysoka. PWRiL, Warszawa.
  63. Podymniak, M. (2015). Zbiory borówki na finiszu. Jagodnik. http://jagodnik.pl/zbiory-borowki-na-finiszu [access: 14.05.2019].
  64. Rivera, M., Rodriguez-Saona, C.R., Jennings, D.E., Koppenhoffer, A.M. (2015). Assessing the impact of cultivation and plant domestication of highbush blueberry (Vaccinium corymbosum) on soil properties and associated plant-parasitic nematode communities. Soil Biol. Biochem., 88, 25–28. https://doi.org/10.1016/j.soilbio.2015.05.010 DOI: https://doi.org/10.1016/j.soilbio.2015.05.010
  65. Rzepka-Plevneš, D., Krupa-Małkiewicz, M., Kurek, J., Smolik, M. (2009). Effects of water deficits on development and yield of rye varieties differing in tolerance to drought at seedling stage. J. Food Agric. Environ., 7, 492–495.
  66. Sager, J.C., Smith, W.O., Edwards, J.L., Cyr, K.L. (1988). Photosynthetic efficiency and phytochrome photoequilibria determination using spectral data. Transact. ASAE, 31(6), 1882–1889. DOI: https://doi.org/10.13031/2013.30952
  67. Sagoo, L., Huckle, L., Atwood, A., Rahn, J., Lillywhite, C., Stavridou, R., Noble, E. (2016). Research Review No. 3110149017. Review of evidence on the principles of crop nutrient management and nutrition for horticultural crops. Agric. Hortic. Dev. Board, Kenilworth, UK.
  68. Scalbert, A., Manach, C., Morand, C., Rémésy, C., Jiménez, L. (2005). Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci Nutr., 45(4), 287–306. DOI: https://doi.org/10.1080/1040869059096 DOI: https://doi.org/10.1080/1040869059096
  69. Shevyakova, N.I., Bakulina, E.A., Kuznetsov, V.V. (2009). Proline antioxidant role in the common ice plant subjected to salinity and paraquat treatment inducing oxidative stress. Russ. J. Plant Physiol., 56(5), 663–669. DOI: https://doi.org/10.1134/S1021443709050124
  70. Shin, K.S., Murthy, H.N., Heo, J.W., Hahn, E.J., Paek, K.Y. (2008). The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiol. Plant, 30(3), 339–343. DOI: https://doi.org/10.1007/s11738-007-0128-0
  71. Smolarz, K., Mercik, S. (1993). Growth and yielding of highbush blueberry (Vaccinium corymbosum L.) in response to long term (since 1923) differential fertilization. Acta Hortic., 346, 193–206. DOI: https://doi.org/10.17660/ActaHortic.1993.346.26
  72. Strik, B., Finn, Ch.E., Moore, P.P. (2014). Blueberry cultivars for the Pacific Northwest. A Pacific Northwest extension publication Oregon State University, University of Idaho, Washington State University. PNW 656, pp. 2–18.
  73. Verbruggen, N., Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids, 35, 753–759. https://doi.org/10.1007/s00726-008-0061-6 DOI: https://doi.org/10.1007/s00726-008-0061-6
  74. Vidović, M., Morina, F., Milić, S., Zechmann, B., Albert, A., Winkler, J.B., Veljović Jovanović, S. (2015). Ultraviolet B component of sunlight stimulates photosynthesis and flavonoid accumulation in variegated P lectranthus coleoides leaves depending on background light. Plant Cell Environ., 38(5), 968–979. https://doi.org/10.1111/pce.12471 DOI: https://doi.org/10.1111/pce.12471
  75. Waterhouse, A.L., Ebeler, S.E. (eds). (1998). Chemistry of wine flavor. American Chemical Society, Washington, DC. DOI: https://doi.org/10.1021/bk-1998-0714
  76. Yang, Y., Zhang, Y., Wei, X., You, J., Wang, W., Lu, J., Shi, R. (2011). Comparative antioxidative responses and proline metabolism in two wheat cultivars under short term lead stress. Ecotox. Environ. Saf., 74, 733–740. https://doi.org/10.1016/j.ecoenv.2010.10.035 DOI: https://doi.org/10.1016/j.ecoenv.2010.10.035
  77. Zoratti, L., Karppinen, K., Luengo Escobar, A., Häggman, H., Jaakola, L. (2014). Light-controlled flavonoid biosynthesis in fruits. Front. Plant Sci., 5, 534. https://doi.org/10.3389/fpls.2014.00534 DOI: https://doi.org/10.3389/fpls.2014.00534
  78. Piljac-Žegarac, J., Belščak, A., Piljac, A. (2009). Antioxidant capacity and polyphenolic content of blueberry (Vaccinium corymbosum L.) leaf infusions. J. Med. Food, 12(3), 608–614. DOI: https://doi.org/10.1089/jmf.2008.0081
  79. Wang, L.J., Wu, J., Wang, H.X., Li, S.S., Zheng, X.C., Du, H., Wang, L.S. (2015). Composition of phenolic compounds and antioxidant activity in the leaves of blueberry cultivars. J. Funct. Foods., 16, 295–304. DOI: https://doi.org/10.1016/j.jff.2015.04.027

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.