Skip to main navigation menu Skip to main content Skip to site footer

Vol. 22 No. 3 (2023)

Articles

How monochromatic and composed light affect the kale ‘Scarlet’ in its initial growth stage

DOI: https://doi.org/10.24326/asphc.2023.4529
Submitted: January 13, 2022
Published: 2023-06-30

Abstract

Interest in vegetables at their microgreen stage, especially those from the Brassicaceae family, has constantly grown due to their numerous health-promoting compounds. Brassica oleracea convar. acephala var. sabellica cv. Scarlet with purple leaf discolouration was used in the study. Four LED lighting treatments were applied: white light (control), monochromatic blue (430 nm), monochromatic red (660 nm) and purple, i.e., blue (30% in spectrum, 430 nm) mixed with red (70%, 620 nm and 660 nm in equal shares). Photosynthetic photon flux density (PPFD) was 100 µmol m–2 s–1, photoperiod – 16 h light. The purple light promoted the cotyledon growth but decreased the soluble sugars content. The blue light significantly enhanced the anthocyanins synthesis and the radical scavenging activity (RSA). While under white light, the highest concentration of free amino acids and the lowest RSA were observed. As regards the phenolic compounds and photosynthetic pigments content, the reaction of kale to white light was similar to those observed under the purple and red light conditions. The experiment discussed here is of great practical importance and reveals the need for more in-depth research.

References

  1. Alrifai, O., Hao, X., Marcone, M.F., Tsao, R. (2019). Current review of the modulatory effect of LED lights on photosynthesis of secondary metabolites and future perspectives of microgreen vegetables. Agric. Food Chem., 67, 6075–6090. https://doi.org/10.1021/acs.jafc.9b00819 DOI: https://doi.org/10.1021/acs.jafc.9b00819
  2. Bantis, F., Smirnakou, S., Ouzounis, T., Koukounaras, A., Ntagkas, N., Radoglou, K. (2018). Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Sci. Hortic., 235, 437–451. https://doi.org/10.1016/j.scienta.2018.02.058 DOI: https://doi.org/10.1016/j.scienta.2018.02.058
  3. Brazaitytė, A., Miliauskienė, J., Vaštkatiė-Kairienė, V., Sutulienė, R., Laužikė, K., Duchovskis, P., Małek, S. (2021). Effect of different ratios of blue and red LED light on Brassicaceae microgreens under a controlled environment. Plants, 10, 801. https://doi.org/10.3390/plants10040801 DOI: https://doi.org/10.3390/plants10040801
  4. Brazaitytė, A., Viršilė, A., Samoulienė, G., Jankauskienė, J., Sakalauskienė, S., Sirtatutas, R., Novičkovas, A., Dabašinskas, L., Vaštkatiė, V., Miliauskienė, J., Duchovskis, P. (2016). Light quality: growth and nutritional value of microgreens under indoor and greenhouse conditions. Acta Hortic., 1134, 277–284. https://doi.org/10.17660/ActaHortic.2016.1134.37 DOI: https://doi.org/10.17660/ActaHortic.2016.1134.37
  5. Chutipongtanate, S., Watcharatanyatip, K., Homvises, T., Jaturongkakul, K., Thongboonkerd, V. (2012). Systematic comparisons of various spectrophotometric and colorimetric methods to measure concentrations of protein, peptide and amino acid: Detectable limits, linear dynamic ranges, interferences, practicality and unit costs. Talanta, 98, 123–129. DOI: https://doi.org/10.1016/j.talanta.2012.06.058
  6. De la Fuente, B., López-García, G., Máñez, V., Alegría, A., Barberá, R., Cilla, A. (2019). Evaluation of the bioaccessibility of antioxidant bioactive compounds and minerals of four genotypes of Brassicaceaemicrogreens. Foods, 8, 250. https://doi.org/10.3390/foods8070250 DOI: https://doi.org/10.3390/foods8070250
  7. Di Gioia, F., Renna, M., Santamaria, P. (2017). Sprouts, microgreens and “baby leaf” vegetables. Berlin Heidelberg, Germany, Springer. DOI: https://doi.org/10.1007/978-1-4939-7018-6_11
  8. El Nakhel, C., Pannico, A., Graziani, G., Giordano, M., Kyriacou, M.C., Ritieni, A., De Pascale, S., Rouphael, Y. (2021). Mineral and antioxidant attributes of Petroselinum crispum at different stages of ontogeny: microgreens vs. baby greens. Agronomy, 11(857), 1–9. https://doi.org/10.3390/agronomy11050857 DOI: https://doi.org/10.3390/agronomy11050857
  9. Fiutak, G., Michalczyk, M. (2020). Effect of artificial light source on pigments, thiocyanates and ascorbic acid content in kale sprouts (Brassica oleracea L. var. Sabellica L.). Food Chem., 330, 127189. https://doi.org/10.1016/j.foodchem.2020.127189 DOI: https://doi.org/10.1016/j.foodchem.2020.127189
  10. Folta, K.M., Pontin, M.A., Karli-Neumann, G., Bottini, R., Spalding, E.P. (2003). Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hupocotyl growth by blue light. Plant J., 36(2), 203–214. https://doi.org/10.1046/j.1365-313x.2003.01870.x DOI: https://doi.org/10.1046/j.1365-313X.2003.01870.x
  11. Fukumoto, L.R., Mazza, G. (2000). Assessing antioxidant and prooxidant activities of phenolic compounds. Journalof Agriculture and Food Chemistry, 48, 3597–3604. https://doi.org/10.1021/jf000220w DOI: https://doi.org/10.1021/jf000220w
  12. Gerovac, J.R., Craver, J.K., Boldt, J.K., Lopez, R.G. (2016). Light intensity and quality from sole-source light emitting diodes impact growth, morphology, and nutrient content of Brassica microgreens. HortScience, 51(5), 497–503. https://doi.org/10.21273/HORTSCI.51.5.497 DOI: https://doi.org/10.21273/HORTSCI.51.5.497
  13. Kong, Y., Kamath, D., Zheng, Y. (2019). Blue versus red light can promote elongation growth independent of photoperiod: A study in four Brassica microgreens species. HortScience, 54(11), 1955–1961. https://doi.org/10.21273/HORTSCI14286-19 DOI: https://doi.org/10.21273/HORTSCI14286-19
  14. Kopsell, D.A., Sams, C.A., Morrow, R.C. (2015). Blue wavelength from LED lighting increase nutritionally important metabolites in specialty crops. HortScience, 50(9), 1285˗1288. https://doi.org/10.21273/HORTSCI.50.9.1285 DOI: https://doi.org/10.21273/HORTSCI.50.9.1285
  15. Lefsrud, M.G, Kopsell, D.A., Sams, C.E. (2008). Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortScience, 43(7), 2243˗2244. https://doi.org/10.21273/HORTSCI.43.7.2243 DOI: https://doi.org/10.21273/HORTSCI.43.7.2243
  16. Li, Y., Zheng, Y., Liu, H., Zhang, Y., Hao, Y., Song, S., Lei, B. (2019). Effect of supplemental blue light intensity on the growth and quality of Chinese kale. Hortic. Env. Biotechnol., 60(1), 49–57. https://doi.org/10.1007/s13580-018-0104-1 DOI: https://doi.org/10.1007/s13580-018-0104-1
  17. Maness, N. (2010). Extraction and analysis of soluble carbohydrates. In: Plant stress tolerance. Humana Press, 341–370. https://doi.org/10.1007/978-1-60761-702-0_22 DOI: https://doi.org/10.1007/978-1-60761-702-0_22
  18. Matysiak, B., Kowalski, A. (2021). The growth, photosynthetic parameters and nitrogenstatus of basil, coriander and oregano grown under different led light spectra. Acta Sci. Pol. Hortorum Cultus, 20(2), 13–22. https://doi.org/10.24326/asphc.2021.2.2 DOI: https://doi.org/10.24326/asphc.2021.2.2
  19. Niroula, A., Khatri, S., Timilsina, R., Khadka, D., Khadka, A., Ojha, P. (2019). Profile of chlorophylls and carotenoids of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) microgreens. J. Food Sci. Technol., 56(5), 2758–2763. https://doi.org/10.1007/s13197-019-03768-9 DOI: https://doi.org/10.1007/s13197-019-03768-9
  20. Nanya, K., Ishigami, Y., Hikosaka, S., Goto, E. (2012). Effects of blue and red light on stem elongation and flowering of tomato seedlings. Acta Hortic., 956, 261–266. https://doi.org/10.17660/ActaHortic.2012.956.29 DOI: https://doi.org/10.17660/ActaHortic.2012.956.29
  21. Pekkarinen, S.S., Stöckmann, H., Schwarz, K., Heinonen, I.M., Hopia, A.I. (1999). Antioxidant activity and partitioning of phenolic acids in bulk and emulsified methyl linoleate. J. Agric. Food Chem., 47, 3036–3043. https://doi.org/10.1021/jf9813236 DOI: https://doi.org/10.1021/jf9813236
  22. Renna, M., Paradiso, V.M. (2020). Ongoing research on microgreens: nutritional properties, shelf-life, sustainable production, innovative growing and processing approaches. Foods, 9,826. https://doi.org/10.3390/foods9060826 DOI: https://doi.org/10.3390/foods9060826
  23. Samuolienė, G., Brazaitytė, A., Vaštakaitė, V. (2017). Light-emitting diodes (LEDs) for improved nutritional quality. In: Light emitting diodes for agriculture, Dutta Gupta S. (ed.). Springer, 149–190. https://dx.doi.org/10.1007/978-981-10-5807-3_8 DOI: https://doi.org/10.1007/978-981-10-5807-3_8
  24. Teng, J., Liao, P., Wang, M. (2021). The role of emerging micro-scale vegetables in human diet and health benefits – an updated review based on microgreens. Food Func., 5(12), 1914–1932. DOI: https://doi.org/10.1039/D0FO03299A
  25. Turner, E.R., Luo, Y., Buchanan, R.L. (2020). Microgreen nutrition, food safety, and shelf life: A review. J. Food Sci., 85(4), 870–882. https://doi.org/10.1111/1750-3841.15049 DOI: https://doi.org/10.1111/1750-3841.15049
  26. Viršilė, A., Olle, M., Duchovskis, P. (2017). LED lighting in horticulture. In: Light emitting diodes for agriculture, Dutta Gupta S. (ed.). Springer, 113–147. http://dx.doi.org/10.1007/978-981-10-5807-3 DOI: https://doi.org/10.1007/978-981-10-5807-3_7
  27. Wellburn, A.R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol., 144, 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2 DOI: https://doi.org/10.1016/S0176-1617(11)81192-2
  28. Ying, Q., Kong, Y., Jones-Baumgardt, C., Zheng, Y. (2020). Responses of yield and appearance quality of four Brassicaceae microgreens to varied blue light proportion in red and blue light-emitting diodes lighting. Sci. Hortic., 259, 108857. http://dx.doi.org/10.1016/j.scienta.2019.108857 DOI: https://doi.org/10.1016/j.scienta.2019.108857
  29. Ying, Q., Jones-Baumgardt, C., Zheng, Y., Bozzo, G. (2021). The Proportion of blue light from light-emitting diodes alters microgreen phytochemical profiles in a species-specific manner. HortScience, 56(1), 13–20. https://doi.org/10.21273/HORTSCI15371-20 DOI: https://doi.org/10.21273/HORTSCI15371-20

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.