Abstract
Plant responses to biotic and abiotic stresses are regulated by salicylic acid (SA), a signaling molecule. The goal of this study was to determine the efficacy of foliar SA treatments (0.25, 0.50, or 1.00 mM) in reducing salt stress in lettuce exposed to 100 mM NaCl. Salt-stressed plants given a foliar application of SA showed alleviation of the negative effects of salinity, resulting in higher growth performance (increases of 6%–198%). The positive impacts of SA were especially noticeable as an increase in the content of photosynthetic pigments, such as total chlorophyll (31–72%) and total carotenoids (49–141%). Application of SA also helped to reduce membrane damage, as seen by significantly lower levels of MDA (31–70%) in the leaves of salt-stressed lettuce plants. Moreover, the use of SA enhanced overall flavonoid and phenolic content, as well as nutrient absorption. SA treatment also increased the activities of antioxidant enzymes, such as ascorbate peroxidase, catalase, glutathione reductase, and superoxide dismutase, resulting in a considerable reduction in salt-induced oxidative damage. The most efficient SA application concentration was 0.50 mM. Overall, the use of SA as a foliar spray could be recommended as a long-term strategy for improving the defense systems of salt-stressed lettuce.
References
- Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M.J., Hernandez, J.A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1), 1–18. https://doi.org/10.3390/agronomy7010018
DOI: https://doi.org/10.3390/agronomy7010018
- Arnon, D.I. (1949). Copper enzymes in isolated chloroplast: polyphenoloxidase in Beta vulgaris. Plant Physiol., 14, 1–15. https://doi.org/10.1104/pp.24.1.1
DOI: https://doi.org/10.1104/pp.24.1.1
- Behdad, A., Mohsenzadeh, S., Azizi, M. (2021). Growth, leaf gas exchange and physiological parameters of two Glycyrrhiza glabra L. populations subjected to salt stress condition. Rhizosphere, 17, 100319. https://doi.org/10.1016/j.rhisph.2021.100319
DOI: https://doi.org/10.1016/j.rhisph.2021.100319
- Bose, B., Choudhury, H., Tandon, P., Kumaria, S. (2017). Studies on secondary metabolite profiling, anti-inflammatory potential, in vitro photoprotective and skin-aging related enzyme inhibitory activities of Malaxis acuminata, a threatened orchid of nutraceutical importance. J. Photochem. Photobiol. B Biology, 173, 686–695. https://doi.org/10.1016/j.jphotobiol.2017.07.010
DOI: https://doi.org/10.1016/j.jphotobiol.2017.07.010
- Cakmak, I., Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol., 98, 1222–1226. https://doi.org/10.1104/pp.98.4.1222
DOI: https://doi.org/10.1104/pp.98.4.1222
- Da Silva Ribeiro, J.E., Vieira de Sousa, L., Iarley da Silva, T., Silva Nóbrega, J., Andrade Figueiredo, F.R., Alcântara Bruno, R.D.L., Bandeira de Albuquerque, M. (2020). Citrullus lanatus morphophysiological responses to the combination of salicylic acid and salinity stress. Braz. J. Agric. Sci./Rev. Bras. Ciênc. Agrár., 15(1), 1–13. https://doi.org/10.5039/agraria.v15i1a6638
DOI: https://doi.org/10.5039/agraria.v15i1a6638
- Dasgan, H.Y., Bayram, M., Kusvuran, S., Coban, A.G., Akhoundnejad, Y. (2018). Screening of tomatoes for their resistance to salinity and drought stress. J. Biol. Agric. Health., 8(24), 31– 37.
- El-Taher, A.M., El-Raouf, A., Hany, S., Osman, N.A., Azoz, S.N., Omar, M.A., Mahmoud, A.M. (2022). Effect of salt stress and foliar application of salicylic acid on morphological, biochemical, anatomical, and productivity characteristics of cowpea (Vigna unguiculata L.) plants. Plants, 11(1), 1–15. https://doi.org/10.3390/plants11010115
DOI: https://doi.org/10.3390/plants11010115
- Ergun, O., Dasgan, H.Y., Isık, O. (2018). Effects of microalgae Chlorella vulgaris on hydroponically grown lettuce. Acta Hortic., 1273, 169–176. https://doi.org/10.17660/ActaHortic.2020.1273.23
DOI: https://doi.org/10.17660/ActaHortic.2020.1273.23
- Faghih, S., Ghobadi, C., Zarei, A. (2017). Response of strawberry plant cv.‘Camarosa’ to salicylic acid and methyl jasmonate application under salt stress condition. J. Plant Growth Regul., 36(3), 651–659. https://doi.org/10.1007/s00344-017-9666-x
DOI: https://doi.org/10.1007/s00344-017-9666-x
- Gafur, M.A., Putra, E.T.S. (2019). Effect of drought stress in physiological oil palm seedling (Elaeis guineensis Jacq.) using calcium application. Asian J. Biol. Sci., 12, 550–556.
DOI: https://doi.org/10.3923/ajbs.2019.550.556
- Ghassemi-Golezani, K., Farhadi, N. (2021). The efficacy of salicylic acid levels on photosynthetic activity, growth, and essential oil content and composition of pennyroyal plants under salt stress. J. Plant Growth Regul., 1–13. https://doi.org/10.1007/s00344-021-10515-y
DOI: https://doi.org/10.1007/s00344-021-10515-y
- Hauser, F., Horie, T. (2010). A conserved primary salt tolerance mechanism mediated by HKT transporters:
- a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ., 33(4), 552–565. https://doi.org/10.1111/j.1365-3040.2009.02056x
DOI: https://doi.org/10.1111/j.1365-3040.2009.02056.x
- Heath, R.L., Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125, 189–198. https://doi.org/10.1016/0003-9861(68)90654-1
DOI: https://doi.org/10.1016/0003-9861(68)90654-1
- Heidarian, F., Roshandel, P. (2021). Salicylic acid improves tolerance against salt stress through boosting antioxidant defense system in black bean. Int. J. Hortic. Sci. Technol., 8(2), 175–189. https://doi.org/10.22059/IJHST.2020.297885.345
- Hussein, M.M., Rezk, A.I., El-Nasharty, A.B., Mehanna, H.M. (2015). Nutritional and growth response of canola plants to salicylic acid under salt stress conditions. Int. J. ChemTech Res., 8(6), 574–581.
- İbrahimova, U., Kumari, P., Yadav, S., Rastogi, A., Antala, M., Suleymanova, Z., Brestic, M. (2021). Progress in understanding salt stress response in plants using biotechnological tools. J. Biotech., 329, 180–191. https://doi.org/10.1016/j.jbiotec.2021.02.007
DOI: https://doi.org/10.1016/j.jbiotec.2021.02.007
- Jannesar, M., Seyedi, S.M., Niknam, V., Ghadirzadeh Khorzoghi, E., Ebrahimzadeh, H. (2021). Salicylic acid, as a positive regulator of isochorismate synthase, reduces the negative effect of salt stress on Pistacia vera L. by increasing photosynthetic pigments and inducing antioxidant activity. J. Plant Growth Regul., 1–12. https://doi.org/10.1007/s00344-021-10383-6
DOI: https://doi.org/10.1007/s00344-021-10383-6
- Jouyban, Z. (2012). The effects of salt stress on plant growth. Tech. J. Engineer. Appl. Sci., 2(1), 7–10.
- Khalifa, G.S., Abdelrassoul, M., Hegazi, A.M., Elsherif, M.H. (2016). Attenuation of negative effects of saline stress in two lettuce cultivars by salicylic acid and glycine betaine. Gesunde Pflanzen, 68(4), 177–189. https://doi.org/10.1007/s10343-016-0376-2
DOI: https://doi.org/10.1007/s10343-016-0376-2
- Kıran, S., Kusvuran, S., Ozkay, F., Ellialtıoglu, S.S. (2019). Change in physiological and biochemical parameters under drought stress in salt-tolerant and salt-susceptible eggplant genotypes. Turk. J. Agric. For., 43, 593–602. https://doi.org/10.3906/tar-1808-1
DOI: https://doi.org/10.3906/tar-1808-1
- Koo, Y.M., Heo, A.Y., Choi, H.W. (2020). Salicylic acid as a safe plant protector and growth regulator. Plant Pathol. J., 36(1), 1–10. https://doi.org/10.5423/PPJ.RW.12.2019.0295
DOI: https://doi.org/10.5423/PPJ.RW.12.2019.0295
- Kusvuran, S. (2021). Microalgae (Chlorella vulgaris Beijerinck) alleviates drought stress of broccoli plants by improving nutrient uptake, secondary metabolites, and antioxidative defense system. Hortic. Plant J., 7(3), 221–231.
DOI: https://doi.org/10.1016/j.hpj.2021.03.007
- Lamnai, K., Anaya, F., Fghire, R., Zine, H., Wahbi, S., Loutfi, K. (2021). Impact of exogenous application of salicylic acid on growth, water status and antioxidant enzyme activity of strawberry plants (Fragaria vesca L.) under salt stress conditions. Gesunde Pflanzen, 73(4), 465–478.
DOI: https://doi.org/10.1007/s10343-021-00567-1
- Mohammadi, H., Hazrati, S., Janmohammadi, M. (2019). Approaches to enhance antioxidant defense in plants. In: Approaches for enhancing abiotic stress tolerance in plants, Hasanuzzaman, M., Nahar, K., Fujita, M., Oku, H., Islam, M.T. (eds). CRC Press, Taylor & Francis Group, Florida, 1–26.
DOI: https://doi.org/10.1201/9781351104722-15
- Munawar, A., Akram, N.A., Ahmad, A., Ashraf, M. (2019). Nitric oxide regulates oxidative defense system, key metabolites and growth of broccoli (Brassica oleracea L.) plants under water limited conditions. Sci. Hortic, 254, 7–13. https://doi.org/10.1016/j.scienta.2019.04.072
DOI: https://doi.org/10.1016/j.scienta.2019.04.072
- Munns, R., Tester, M. (2008). Mechanisms of salinity tolerance. Ann. Rev. Plant Biol., 59, 651. https://doi.org/10.1146/annurev.arplant.59.032607.092911
DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911
- Poór, P., Patyi, G., Takács, Z., Szekeres, A., Bódi, N., Bagyánszki, M., Tari, I. (2019). Salicylic acid-induced ROS production by mitochondrial electron transport chain depends on the activity of mitochondrial hexokinases in tomato (Solanum lycopersicum L.). J. Plant Res., 132(2), 273–283. https://doi.org/10.1007/s10265-019-01085-y
DOI: https://doi.org/10.1007/s10265-019-01085-y
- Poór, P. (2020). Effects of salicylic acid on the metabolism of mitochondrial reactive oxygen species in plants. Biomolecules, 10(2), 341. https://doi.org/10.3390/biom10020341
DOI: https://doi.org/10.3390/biom10020341
- Rajabi Dehnavi, A., Zahedi, M., Razmjoo, J., Eshghizadeh, H. (2019). Effect of exogenous application of salicylic acid on salt-stressed sorghum growth and nutrient contents. J. Plant Nutr., 42(11–12), 1333–1349. https://doi.org/10.1080/01904167.2019.1617307
DOI: https://doi.org/10.1080/01904167.2019.1617307
- Rehman, Z., Hussain, A., Saleem, S., Khilji, S.A., Sajid, Z.A. (2022). Exogenous application of salicylic acid enhances salt stress tolerance in lemongrass (Cymbopogon flexuosus steud. wats). Pak. J. Bot., 54(2), 371–378. https://doi.org/10.30848/PJB2022-2(13)
DOI: https://doi.org/10.30848/PJB2022-2(13)
- Sabir, F.K., Sabir, A., Unal, S., Taytak, M., Kucukbasmaci, A., Bilgin, O.F. (2019). Postharvest quality extension of minimally processed table grapes by chitosan coating. Int. J. Fruit Sci., 19(4), 347–358. https://doi.org/10.1080/15538362.2018.1506961
DOI: https://doi.org/10.1080/15538362.2018.1506961
- Sarabi, B., Bolandnazar, S., Ghaderi, N., Ghashghaie, J. (2017). Genotypic differences in physiological and biochemical responses to salinity stress in melon (Cucumis melo L.) plants: prospects for selection of salt tolerant landraces. Plant Physiol. Biochem., 119, 294–311. https://doi.org/10.1016/j.plaphy.2017.09.006
DOI: https://doi.org/10.1016/j.plaphy.2017.09.006
- Shaki, F., Maboud, H.E., Niknam, V. (2018). Growth enhancement and salt tolerance of Safflower (Carthamus tinctorius L.), by salicylic acid. Curr. Plant Biol., 13, 16–22. https://doi.org/10.1016/j.cpb.2018.04.001
DOI: https://doi.org/10.1016/j.cpb.2018.04.001
- Singh, R., Upadhyay, A.K., Singh, D.P. (2018). Regulation of oxidative stress and mineral nutrient status by selenium in arsenic treated crop plant Oryza sativa. Ecotoxicol. Environ. Saf., 148, 105–113. https://doi.org/10.1016/j.ecoenv.2017.10.008
DOI: https://doi.org/10.1016/j.ecoenv.2017.10.008
- Türkan, I., Bor, M., Özdemir, F., Koca, H. (2005). Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci., 168(1), 223–231. https://doi.org/10.1016/j.plantsci.2004.07.032
DOI: https://doi.org/10.1016/j.plantsci.2004.07.032
- Van Aken, O., Van Breusegem, F. (2015). Licensed to kill: mitochondria, chloroplasts, and cell death. Trends Plant Sci., 20(11), 754–766. https://doi.org/10.1016/j.tplants.2015.08.002
DOI: https://doi.org/10.1016/j.tplants.2015.08.002
- Vázquez, J.G., Hernández-Fernández, L., Hernández, L., Pérez-Bonachea, L., Campbell, R. (2021). Physiological and biochemical response of water lettuce (Pistia stratiotes) to short-term mild saline stress. J. Plant Physiol. Pathol., 9(10), 1–6.
- Yang, Y., Guo, Y. (2018). Unraveling salt stress signaling in plants. J. Integr. Plant Bio., 60(9), 796–804. https://doi.org/10.1111/jipb.12689
DOI: https://doi.org/10.1111/jipb.12689
Downloads
Download data is not yet available.
-
Wael Abdel-Kader El-Tohamy,
Hamed Maher El-Abagy,
Mohammed Abd Allah Badr,
Nazim Gruda,
EFFECT OF EXOGENOUS SALICYLIC ACID ON THE RESPONSE OF SNAP BEAN (Phaseolus vulgaris L.) AND JERUSALEM ARTICHOKE (Helianthus tuberosus L.) TO DROUGHT STRESS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 17 No. 4 (2018)
-
Hamid Mohammadi,
Ahmad Aghaee,
Parya Pormohammad,
Mansour Ghorbanpour,
Saeid Hazrati,
Physiological reaction and chemical composition of Stachys schtschegleevii Sosn. essential oil under water deficit.
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 21 No. 2 (2022)
-
Samia Ben Mansour-Gueddes,
Dhouha Saidana,
Dhouha Saidana,
Imed Cheraief,
Marwa Dkhilali,
Mohamed Braham,
BIOCHEMICAL, MINERAL AND ANATOMICAL CHARACTERISTICS OF THE OLIVE TREE CV. CHETOUI GROWING IN SEVERAL TUNISIAN AREAS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 17 No. 2 (2018)
-
Peiyan Wang,
Lanting Qi,
Junna Song,
Ruojia Zhu,
Xiaowei Han,
Yu Liu,
Xianyun Wang,
Yuguang Zheng,
Zhao Liu,
Functional characterization of ZjPYL8 from sour jujube: enhancing the sensitivity of stomata and roots to ABA in Arabidopsis thaliana
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 22 No. 6 (2023)
-
Sławomir Świerczyński,
Comparison of the efficiency of synthetic auxins and biostimulants and two types of substrate in rooting of shoot cuttings in ‘Pi-ku 1’ rootstock
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 23 No. 2 (2024)
-
Monika Henschke,
Klaudia Borowiak,
EFFECT OF SALINITY ON SELECTED PHYSIOLOGICAL AND MORPHOLOGICAL CHARACTERISTICS OF Spartina pectinata (Link.) ‘AUREOMARGINATA’
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 17 No. 6 (2018)
-
Lamia Vojodi Mehrabani,
Mohammad Bagher Hassanpouraghdam,
Tahereh Shamsi-Khotab,
THE EFFECTS OF COMMON AND NANO-ZINC FOLIAR APPLICATION ON THE ALLEVIATION OF SALINITY STRESS IN Rosmarinus officinalis L.
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 17 No. 6 (2018)
-
Serkan Candar,
Elman Bahar,
İlknur Korkutal,
Fatma Betül Aktaş,
Defoliation and water leaf potential effects on oenological properties of Merlot (Vitis vinifera L.) grape must
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 22 No. 5 (2023)
-
Iwona Łukasik,
Hubert Sytykiewicz,
Sylwia Goławska,
Effect of the cereal aphid infestation on the oxidative damages of protein in the maize (Zea mays L.)
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 20 No. 1 (2021)
-
Darija Jodaugiene,
Ausra Sinkeviciene,
Rita Pupaliene,
Velemir Ninkovic,
Zita Kriauciuniene,
ALLELOPATHIC EFFECT OF ORGANIC MULCHES ON VEGETABLE GERMINATION AND EARLY DEVELOPMENT
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 17 No. 3 (2018)
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.