Skip to main navigation menu Skip to main content Skip to site footer

Vol. 23 No. 1 (2024)

Articles

Effect of brassinosteroids on rooting of the ornamental deciduous shrubs

DOI: https://doi.org/10.24326/asphc.2024.5265
Submitted: August 30, 2023
Published: 2024-02-29

Abstract

Brassinosteroids are a developing group of growth regulators. They are a group of steroid hormones involved in plants’ physiological and developmental processes. Among other things, they are responsible for cell wall regeneration or cell elongation. This experiment aimed to examine the effect of rooting stimulants on rhizogenesis in cuttings of two deciduous shrub species: Philadelphus ’Virginal’ and Hydrangea paniculata ’Limelight’. Aqueous solutions of indole-3-butyric acid (IBA) at 200 mg·L–1, Brassinolide (BL) at 0.05% and 24-epibrassinolide (24epiBL) (0.05%) were used in this study. The results obtained showed that both auxin and both of the brassinosteroids used increased the percentage of rooted cuttings almost twice, the degree of rooted cuttings and root length – for BL + IBA – longer roots than the control by 41% in jasmine and by 59% in hydrangea. The growth regulators applied during the rooting of cuttings also caused changes in the organic compound content of plant tissues and the activity of oxidative stress enzymes. The studies and results suggest that brassinosteroids may soon replace the popular rooting stimulants.

References

  1. Ali, B. (2019). Brassinosteroids: The promising plant growth regulators in horticulture. In: Brassinosteroids: plant growth and development, Hayat, S., Yusuf, M., Bhardwaj, R., Bajguz, A. (eds.). Springer, Singapore, 349–365. https://doi.org/10.1007/978-981-13-6058-9_12 DOI: https://doi.org/10.1007/978-981-13-6058-9_12
  2. Amraee, L., Rahmani, F., Mandoulakani, B.A. (2020). Exogenous application of 24-epibrassinosteroid mitigates NaCl toxicity in flax by modifying free amino acids profile and antioxidant defence system. Funct. Plant Biol. 47(6), 565–575. https://doi.org/10.1071/fp19191 DOI: https://doi.org/10.1071/FP19191
  3. Anuradha, S., Rao, S.S.R. (2001). Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.). Plant Growth Reg. 33, 151–153. https://doi.org/10.1023/A:1017590108484 DOI: https://doi.org/10.1023/A:1017590108484
  4. Bajguz, A., Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. 47(1), 1–8. https://doi.org/10.1016/j.plaphy.2008.10.002 DOI: https://doi.org/10.1016/j.plaphy.2008.10.002
  5. Bao, F., Shen, J., Brady, S.R., Muday, G.M., Asami, T., Yang, Z. (2004). Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol. 134(4), 1624–1631. https://doi.org/10.1104/pp.103.036897 DOI: https://doi.org/10.1104/pp.103.036897
  6. Baqer, H.A., Al-Hassan, M.F.H., Mahmod, J.W. (2019). Role of brassinosteroids (BRs) in plants. J. Res. Ecol. 7(2), 2555–2563.
  7. Behnamnia, M., Kalantari, K.M., Ziale, J. (2009). The effects of brassinosteroids on the induction of biochemical changes in Lycopersicon esculentum under drought stress. Turk. J. Biol. 33(6), 417–428. https://doi.org/10.3906/bot-0806-12 DOI: https://doi.org/10.3906/bot-0806-12
  8. Bradford, M.M. (1976). A rapid and sensitive metod for the quantification of microgram quantities of protein utilizng the principle of protein dye binding. Anal. Biochem. 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 DOI: https://doi.org/10.1006/abio.1976.9999
  9. Brosa, C. (1999). Biological effects of brassinosteroids.Crit. Rev. Biochem. Mol. Biol. 34(5), 339–358. https://doi.org/10.1080/10409239991209345 DOI: https://doi.org/10.1080/10409239991209345
  10. Dalio, R.J.D., Pinheiro, H.P., Sodek, L., Baptista Haddad, C.R. (2011). The effect of 24-epibrassinolide and clotrimazole on the adaptation of Cajanus cajan (L.) Millsp. to salinity. Acta Physiol. Plant. 33, 1887–1896. https://doi.org/10.1007/s11738-011-0732-x DOI: https://doi.org/10.1007/s11738-011-0732-x
  11. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F. (1956). Colometric method for determination of sugars and related substances. Anal. Chem. 28(3), 350–356. https://doi.org/10.1021/ac60111a017 DOI: https://doi.org/10.1021/ac60111a017
  12. Effendi, Y., Scherer, G.F.E. (2011). Auxin binding-protein1 (ABP1), a receptor to regulate auxin transport and early auxin genes in an interlocking system with PIN proteins and the receptor TIR1. Plant Signal. Behav. 6(8), 1101–1103. https://doi.org/10.4161/psb.6.8.16403 DOI: https://doi.org/10.4161/psb.6.8.16403
  13. Fini, A., Ferrini, F., Frangi, P., Piatti, R., Amoroso, G. (2010). Effects of shading on growth, leaf gas exchange and chlorophyll fluorescence of three container-grown shrubs. Acta Hortic. 885, 109–117. https://doi.org/10.17660/actahortic.2010.885.14 DOI: https://doi.org/10.17660/ActaHortic.2010.885.14
  14. Fridman, Y., Savaldi-Goldstein, S. (2013). Brassinosteroids in growth control: How, when and where. Plant Sci. 209, 24–31. https://doi.org/10.1016/j.plantsci.2013.04.002 DOI: https://doi.org/10.1016/j.plantsci.2013.04.002
  15. Godínez-Mendoza, P.L., Rico-Chávez, A.K., Ferrusquía-Jimenez, N.I., Carbajal-Valenzuela, I.A., Villagómez-Aranda, A.L., Torres-Pacheco, I., Guevara-González, R.G. (2023). Plant hormesis: Revising of the concepts of biostimulation, elicitation and their application in a sustainable agricultural production. Sci. Total Environ. 894, 164883. https://doi.org/10.1016/j.scitotenv.2023.164883 DOI: https://doi.org/10.1016/j.scitotenv.2023.164883
  16. Gomes, M.M.A. (2011). Physiological effects related to brassinosteroid application in plants. In: Brassinosteroids: a class of plant hormone. Hayat, S., Ahmad, A. (eds.), Springer, Dordrecht, 193–242. https://doi.org/10.1007/978-94-007-0189-2_7 DOI: https://doi.org/10.1007/978-94-007-0189-2_7
  17. Góth, L. (1991). A simple method for determination of serum catalase activity and revision range. Clin. Chim. Acta 196(2–3), 143–152. https://doi.org/10.1016/0009-8981(91)90067-m DOI: https://doi.org/10.1016/0009-8981(91)90067-M
  18. Han, H., Zhang, S., Sun, X. (2009). A review on the molecular mechanism of plants rooting modulated by auxin. Afr. J. Biotechnol. 8(3), 348–353.
  19. Husen, A. (2012). Changes of soluble sugars and enzymatic activities during adventitious rooting in cuttings of Grewia optiva as affected by age of donor plants and auxin treatments. Am. J. Plant Physiol. 7(1), 1–16. https://doi.org/10.3923/ajpp.2012.1.16 DOI: https://doi.org/10.3923/ajpp.2012.1.16
  20. Khaleghi, E., Arzani, K., Moallemi, N., Barzegar, M. (2012). Evaluation of chlorophyll content and chlorophyll fluorescence parametrs and relationships betweenchlorophyll a, b and chlorophyll content index under water stress in Olea europaea cv. Dezful. World Acad. Sci. Eng. Technol. 6(8), 1154–1157.
  21. Li, S., Zheng, H., Lin, L., Wang, F., Sui, N. (2021). Roles of brassinosteroids in plant growth and abiotic stress response. Plant Growth Regul. 93(1), 29–38. https://doi.org/10.1007/s10725-020-00672-7 DOI: https://doi.org/10.1007/s10725-020-00672-7
  22. Lichtenthaler, H.K., Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b leaf extracts in different solvents. Biochem. Soc. Trans. 11(5), 591–592. https://doi.org/10.1042/bst0110591 DOI: https://doi.org/10.1042/bst0110591
  23. Lima, J.V., Lobato, A.K.S. (2017). Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit. Physiol. Mol. Biol. Plants 23(1), 59–72. https://doi.org/10.1007/s12298-016-0410-y DOI: https://doi.org/10.1007/s12298-016-0410-y
  24. Lv, B., Tian, H., Zhang, F., Liu, J., Lu, S., Bai, M., Li, C., Ding, Z. (2018). Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLoS Gen. 14(1), e1007144. https://doi.org/10.1371/journal.pgen.1007144 DOI: https://doi.org/10.1371/journal.pgen.1007144
  25. Mao, J., Zhang, D., Li, K., Liu, Z., Liu, X., Song, C., Li, G., Zhao, C., Ma, J., Han, M. (2017). Effect of exogenous Brassinolide (BR) application on the morphology, hormone status, and gene expression of developing lateral roots in Malus hupehensis. Plant Growth Reg. 82, 391–401. https://doi.org/10.1007/s10725-017-0264-5 DOI: https://doi.org/10.1007/s10725-017-0264-5
  26. Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, S., Van Breusegem, F., Noctor, G. (2010). Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J. Exp. Bot. 61(15), 4197–4220. https://doi.org/10.1093/jxb/erq282 DOI: https://doi.org/10.1093/jxb/erq282
  27. Nemhauser, J.L., Mockler, T.C., Chory, J. (2004). Interdependency of brassinosteroids and auxin signaling in Arabidopsis. PLoS Biol. 2(9), 1460–1471. https://doi.org/10.1371/journal.pbio.0020258 DOI: https://doi.org/10.1371/journal.pbio.0020258
  28. Pacholczak, A., Zajączkowska, M., Nowakowska, K. (2021). The effect of brassinosteroids of rooting of stem cuttings in two Barberry (Berberis thunbergii L.) cultivars. Agronomy 11(4), 699. https://doi.org/10.3390/agronomy11040699 DOI: https://doi.org/10.3390/agronomy11040699
  29. Prakash, M., Saravanan, K., Sunil Kumar, B., Ganesan, J. (2003). Effect of brassinosteroids on certain biochemical parameters in groundnut (Arachis hypogaea L.). Indian J. Plant Physiol. 8(3), 313–315.
  30. Rai, V.K. (2002). Role of amino acids in plant responses to stresses. Biol. Plant. 45(4), 481–487. https://doi.org/10.1023/a:1022308229759 DOI: https://doi.org/10.1023/A:1022308229759
  31. Rönsch, H., Adam, G., Matschke, J., Schachler, G. (1993). Influence of (22S,23S)-homobrassinolide on rooting capacity and survival of adult Norway spruce cuttings. Tree Physiol. 12(1), 71–80. https://doi.org/10.1093/treephys/12.1.71 DOI: https://doi.org/10.1093/treephys/12.1.71
  32. Rosas-Saavedra, C., Stange, C. (2016). Biosynthesis of carotenoids in plants: enzymes and color. Carot. Nature 79, 35–69. https://doi.org/10.1007/978-3-319-39126-7_2 DOI: https://doi.org/10.1007/978-3-319-39126-7_2
  33. Rosen, H. (1957). A modified ninhydrin colometric analysis for amino acids. Arch. Biochem. Biophys. 67(1), 10–15. https://doi.org/10.1016/0003-9861(57)90241-2 DOI: https://doi.org/10.1016/0003-9861(57)90241-2
  34. Siddiqui, H., Yusuf, M., Faraz, A., Faizan, M., Sami, F., Hayat, S. (2018). 24-Epibrassinolide supplemented with silicon enhances the photosynthetic efficiency of Brassica juncea under salt stress. S. Afr. J. Bot. 118, 120–128. https://doi.org/10.1016/j.sajb.2018.07.009 DOI: https://doi.org/10.1016/j.sajb.2018.07.009
  35. Siedlecka, M. (2010). Skrypt do ćwiczeń z fizjologii roślin. University of Warsaw. Department of Molecular Plant Physiology, Warsaw, 28–29.
  36. Tanveer, M., Shahzad, B., Sharma, A., Biju, S., Bhardwaj, R. (2018). 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: A review. Plant Physiol. Biochem. 130, 69–79. https://doi.org/10.1016/j.plaphy.2018.06.035 DOI: https://doi.org/10.1016/j.plaphy.2018.06.035
  37. Tribulato, A., Toscano, S., Di Lorenzo, V., Romano, D. (2019). Effects of water stress on gas exchange, water relations and leaf structure in two ornamental shrubs in the Mediterranean area. Agronomy 9(7), 381. https://doi.org/10.3390/agronomy9070381 DOI: https://doi.org/10.3390/agronomy9070381
  38. Vardhini, B.V. (2014). Brassinosteroids’ role for amino acids, peptides and amines modulation in stressed plants – a review. In: Plant adaptation to environmental change: significance of amino acids and their derivatives. Anjum N. A., Gill S. S., Gill R. (eds). CAB International, 300–316. https://doi.org/10.1079/9781780642734.0300 DOI: https://doi.org/10.1079/9781780642734.0300
  39. Wei, Z., Li, J. (2016). Brassinosteroids regulate root growth, development, and symbiosis. Mol. Plant 9(1), 86–100. https://doi.org/10.1016/j.molp.2015.12.003 DOI: https://doi.org/10.1016/j.molp.2015.12.003
  40. Xia, X.-J., Huang, L.-F., Zhou, Y.-H., Mao, W.-H., Shi, K., Wu, J.-X., Asami, T., Chen, Z., Yu, J.-Q. (2009). Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta 230, 1185–1196. https://doi.org/10.1007/s00425-009-1016-1 DOI: https://doi.org/10.1007/s00425-009-1016-1
  41. Yu, J.Q., Huang, L.F., Hu, W.H., Zhou, Y.H., Mao, W.H., Ye, S.F., Nogués, S., (2004). A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J. Exp. Bot. 55(399), 1135–1143. https://doi.org/10.1093/jxb/erh124 DOI: https://doi.org/10.1093/jxb/erh124
  42. Zhu, T., Deng, X., Zhou, X., Zhu, L., Zou, L., Li, P., Zhang, D., Lin, H. (2016). Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato. Sci. Rep. 6(1), 1–15. https://doi.org/10.1038/srep35392 DOI: https://doi.org/10.1038/srep35392

Downloads

Download data is not yet available.

Similar Articles

<< < 108 109 110 111 112 113 114 115 116 > >> 

You may also start an advanced similarity search for this article.