Abstract
Secondary metabolites are a large group of organic compounds generally biosynthesized by medicinal and aromatic plants, which have a wide range of uses in human life today. Peppermint (Mentha piperita L.) is widely used as a traditional medicinal plant worldwide due to its high content of secondary metabolites, including menthol, limonene, pulegone, rosmarinic acid, cinnamic acid, eriocitrin, narirutin and hesperidin. It has different medicinal and culinary uses, such as food flavoring and treating rheumatoid arthritis pain, sinusitis headache and breathing problems. Given the chemical synthesis of plant secondary metabolites under laboratory conditions is considerably expensive and complicated, some alternative methods have been developed. Applying abiotic elicitors such as UV-radiation, abiotic stresses, and phytohormones during peppermint cultivation is an effective strategy to modify secondary metabolite content and components. Therefore, in this review, the most important secondary metabolites of peppermint and their uses are first described, and the abiotic elicitors used to influence the secondary metabolites profile of peppermint and their reaction mechanisms are then explained.
References
- Abdelsalam, I.M., Ghosh, S., AlKafaas, S.S., Bedair, H., Malloum, A., ElKafas, S.S., Saad-Allah, K.M. (2023). Nanotechnology as a tool for abiotic stress mitigation in horticultural crops. Biologia, 78, 163–178. https://doi.org/10.1007/s11756-022-01251-z
- Abdi, G., Karami, L. (2020). Salicylic acid effects on some physiochemical properties and secondary metabolite accumulation in Mentha piperita L. under water deficit stress. Adv. Hortic. Sci., 34(1), 81–91. https://doi.org/10.13128/ahsc-8404
- Abdi, G., Shokrpour, M., Karami, L., Salami, S.A. (2018). Prolonged water deficit stress and methyl jasmonate-mediated changes in metabolite profile, flavonoid concentrations and antioxidant activity in peppermint (Mentha × piperita L.). Notulae Bot. Horti Agrobot. Cluj-Napoca, 47(1), 70–80. https://doi.org/10.15835/nbha47110952
- Abu El-Leel, O., Mohamed, S., Sukar, N., Abd EL-Aziz, M. (2021). Influence of jasmine oil and methyl jasmonate on gene expression and menthol production in Mentha. Sci. J. Agric. Sci., 3(2), 171–184. https://doi.org/10.21608/sjas.2021.79508.1108
- Afkar, S., Karimzadeh, G., Jalali-Javaran, M., Sharifi, M., Behmanesh, M. (2013). Influence of methyl jasmonate on menthol production and gene expression in peppermint (Mentha × piperita L.). J. Med. Plants By-Prod., 2(1), 75–82. https://doi.org/10.22092/jmpb.2013.108494
- Ahmad, B., Dar, T.A., Khan, M.M.A., Ahmad, A., Rinklebe, J., Chen, Y., Ahmad, P. (2022). Oligochitosan fortifies antioxidative and photosynthetic metabolism and enhances secondary metabolite accumulation in arsenic-stressed peppermint. Front. Plant Sci., 13, 987746. https://doi.org/10.3389/fpls.2022.987746
- Ahmad, B., Shabbir, A., Jaleel, H., Khan, M.M.A., Sadiq, Y. (2018). Efficacy of titanium dioxide nanoparticles in modulating photosynthesis, peltate glandular trichomes and essential oil production and quality in Mentha piperita L. Curr. Plant Biol., 13, 6–15. https://doi.org/10.1016/j.cpb.2018.04.002
- Ahmad, N., Sharma, S., Alam, M.K., Singh, V.N., Shamsi, S.F., Mehta, B.R., Fatma, A. (2010). Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf. B, Biointerfaces, 81(1), 81–86. https://doi.org/10.1016/j.colsurfb.2010.06.029
- Aldoghachi, F.E.H., Noor Al-Mousawi, U.M., Shari, FH. (2021). Antioxidant activity of rosmarinic acid extracted and purified from Mentha piperita. Arch. Razi Instit., 76(5), 1279–1287. https://doi.org/10.22092/ari.2021.356072.1770
- Alhaithloul, H.A., Soliman, M.H., Ameta, K.L., El-Esawi, M.A., Elkelish, A. (2019). Changes in ecophysiology, osmolytes, and secondary metabolites of the medicinal plants of Mentha piperita and Catharanthus roseus subjected to drought and heat stress. Biomolecules, 10(1), 43. https://doi.org/10.3390/biom10010043
- Ali, Z.A., Yahya, R., Sekaran, S.D., Puteh, R. (2016). Green synthesis of silver nanoparticles using apple extract and its antibacterial properties. Adv. Mat. Sci. Eng., 4102196. https://doi.org/10.1155/2016/4102196
- Askary, M., Talebi, S.M., Amini, F., Dousti Balout Bangan, A. (2016). Effect of NaCl and iron oxide nanoparticles on Mentha piperita essential oil composition. Environ. Exp. Biol., 14(1), 27–32. https://doi.org/10.22364/eeb.14.05
- Atanassova, M., Georgieva, S., Ivancheva, K. (2011). Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs. J. Chem. Technol. Metall., 46(1), 81–88.
- Azimychetabi, Z., Nodehi, M.S., Moghadam, T.K., Motesharezadeh, B. (2021). Cadmium stress alters the essential oil composition and the expression of genes involved in their synthesis in peppermint (Mentha piperita L.). Ind. Crops Prod., 168, 113602. https://doi.org/10.1016/j.indcrop.2021.113602
- Aziz, E.E., Al-Amier, H., Craker, L.E. (2008). Influence of salt stress on growth and essential oil production in peppermint, pennyroyal and apple mint. J. Herbs Spices Med. Plants, 14(1–2), 77–87. https://doi.org/10.1080/10496470802341375
- Baenas, N., García-Viguera, C., Moreno, D.A. (2014). Elicitation: a tool for enriching the bioactive composition of foods. Molecules, 19(9), 13541–13563. https://doi.org/10.3390/molecules190913541
- Behn, H., Albert, A., Marx, F., Noga, G., Ulbrich, A. (2010). Ultraviolet-B and photosynthetically active radiation interactively affect yield and pattern of monoterpenes in leaves of peppermint (Mentha × piperita L.). J. Agric. Food Chem., 58(12), 7361–7367. https://doi.org/10.1021/jf9046072
- Bodalska, A., Kowalczyk, A., Włodarczyk, M., Fecka, I. (2019). Analysis of polyphenolic composition of a herbal medicinal product-peppermint tincture. Molecules, 25(1), 69. https://doi.org/10.3390/molecules25010069
- Bose, S.K., Yadav, R.K., Mishra, S., Sangwan, R.S., Singh, A.K., Mishra, B., Srivastava, A.K., Sangwan, N.S. (2013). Effect of gibberellic acid and calliterpenone on plant growth attributes, trichomes, essential oil biosynthesis and pathway gene expression in differential manner in Mentha arvensis L. Plant Physiol. Biochem., 66, 150–158. https://doi.org/10.1016/j.plaphy.2013.02.011
- Bupesh, G., Amutha, C., Nandagopal, S., Ganeshumar, A., Sureshkumar, P., Murali, K.S. (2007). Antibacterial activity of Mentha piperita L. (Peppermint) from leaf extracts – a medicinal plant. Acta Agric. Sloven., 89(1), 62–73.
- Cappellari, L.D.R., Chiappero, J., Palermo, T.B., Giordano, W., Banchio, E. (2020). Volatile organic compounds from rhizobacteria increase the biosynthesis of secondary metabolites and improve the antioxidant status in Mentha piperita L. grown under salt stress. Agronomy, 10(8), 1094. https://doi.org/10.3390/agronomy10081094
- Cappellari, L.D.R., Santoro, M.V., Schmidt, A., Gershenzon, J., Banchio, E. (2019). Improving phenolic total content and monoterpene in Mentha × piperita by using salicylic acid or methyl jasmonate combined with rhizobacteria inoculation. Int. J. Mol. Sci., 21(1), 50. https://doi.org/10.3390/ijms21010050
- Charles, D.J., Joly, R.J., Simon, JE. (1990). Effects of osmotic stress on the essential oil content and composition of peppermint. Phytochemistry, 29(9), 2837–2840. https://doi.org/10.1016/0031-9422(90)87087-B
- Croteau, R.B., Davis, E.M., Ringer, K.L., Wildung, M.R. (2005). Menthol biosynthesis and genetics. Naturwissenschaften, 92(12), 562–577. https://doi.org/10.1007/s00114-005-0055-0
- Ćavar Zeljković, S., Šišková, J., Komzáková, K., De Diego, N., Kaffková, K., Tarkowski, P. (2021). Phenolic compounds and biological activity of selected Mentha species. Plants, 10(3), 550. https://doi.org/10.3390/plants10030550
- Çoban, Ö., Baydar, N.G. (2016). Brassinosteroid effects on some physical and biochemical properties and secondary metabolite accumulation in peppermint (Mentha piperita L.) under salt stress. Ind. Crops Prod., 86(1), 251–258. https://doi.org/10.1016/j.indcrop.2016.03.049
- Davis, E.M., Ringer, K.L., McConkey, M.E., Croteau, R. (2005). Monoterpene metabolism. Cloning, expression, and characterization of menthone reductases from peppermint. Plant Physiol., 137(3), 873–881. https://doi.org/10.1104/pp.104.053306
- Dempsey, D.A., Klessig, D.F. (2012). SOS – too many signals for systemic acquired resistance? Trends Plant Sci., 17(9), 538–545. https://doi.org/10.1016/j.tplants.2012.05.011
- Dolzhenko, Y., Bertea, C.M., Occhipinti, A., Bossi, S., Maffei, M.E. (2010). UV-B modulates the interplay between terpenoids and flavonoids in peppermint (Mentha × piperita L.). J. Photochem. Photobiol. B, Biol., 100(2), 67–75. https://doi.org/10.1016/j.jphotobiol.2010.05.003
- Farooqi, A., Samgwan, N., Sangwan, R. (1999). Effect of different photoperiodic regimes on growth, flowering and essential oil in Mentha species. Plant Growth Regul., 29(3), 181–187. https://doi.org/10.1023/A:1006248019007
- Fathi, A., Oveysi, M., Nasri, M., Tohidi, H., Kasraei, P. (2020). Physiological responses of peppermint (Mentha piperita L.) to plant growth regulators and salinity stress. Iran. J. Plant Physiol., 11(1), 3499–3508.
- Figueroa-Pérez, M.G., Gallegos-Corona, M.A., Ramos-Gomez, M., Reynoso-Camacho, R. (2015). Salicylic acid elicitation during cultivation of the peppermint plant improves anti-diabetic effects of its infusions. Food Funct. J., 6(6), 1865–1874. https://doi.org/10.1039/c5fo00160a
- Gao, Q.-M., Yu, K., Xia, Y., Shine, M.B., Wang, C., Navarre, D., Kachroo, A., Kachroo, P. (2014). Mono- and digalactosyldiacylglycerol lipids function nonredundantly to regulate systemic acquired resistance in plants. Cell Rep., 9(5), 1681–1691. https://doi.org/10.1016/j.celrep.2014.10.069
- Halder, M., Sarkar, S., Jha, S. (2019). Elicitation. A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng. Life Sci., 19(12), 880–895. https://doi.org/10.1002/elsc.201900058
- Haydari, M., Maresca, V., Rigano, D., Taleei, A., Shahnejat-Bushehri, A.A., Hadian, J., Sorbo, S., Guida, M., Manna, C., Piscopo, M., Notariale, R., De Ruberto, F., Fusaro, L., Basile, A. (2019). Salicylic acid and melatonin alleviate the effects of heat stress on essential oil composition and antioxidant enzyme activity in Mentha × piperita and Mentha arvensis L. Antioxidants, 8(11), 547. https://doi.org/10.3390/antiox8110547
- Heydari, M., Zanfardino, A., Taleei, A., Bushehri, A.A.S., Hadian, J., Maresca, V., Sorbo, S., Napoli, M.D., Varcamonti, M., Basile, A., Rigano, D. (2018). Effect of heat stress on yield, monoterpene content and antibacterial activity of essential oils of Mentha × piperita var. Mitcham and Mentha arvensis var. piperascens. Molecules, 23(8), 1903. https://doi.org/10.3390/molecules23081903
- Hosseini, S.J., Tahmasebi-Sarvestani, Z., Pirdashti, H., Modarres-Sanavy, S.A.M., Mokhtassi-Bidgoli, A., Hazrati, S., Nicola, S. (2021). Investigation of yield, phy tochemical composition, and photosynthetic pigments in different mint ecotypes under salinity stress. Food Sci. Nutr., 9(5), 2620–2643. https://doi.org/10.1002/fsn3.2219
- Jankovskis, L., Kokina, I., Plaksenkova, I., Jermaļonoka, M. (2022). Impact of different nanoparticles on common wheat (Triticum aestivum L.) plants, course, and intensity of photosynthesis. Sci. World J., 3693869. https://doi.org/10.1155/2022/3693869
- Khorasaninejad, S., Mousavi, A., Soltanloo, H., Hemmati, K., Khalighi, A. (2011). The effect of drought stress on growth parameters, essential oil yield and constituent of Peppermint (Mentha piperita L.). J. Med. Plant Res., 5(22), 5360–5365.
- Klessig, D.F., Choi, H.Y., Dempsey, D.A. (2018). Systemic acquired resistance and salicylic acid: past, present, and future. systemic acquired resistance and salicylic acid: past, present, and future. Mol. Plant Microbe Interact, 31(9), 871–975. https://doi.org/10.1094/mpmi-03-18-0067-cr
- Krzyzanowska, J., Czubacka, A., Pecio, L., Przybys, M., Doroszewska, T., Stochmal, A., Oleszek, W. (2012). The effects of jasmonic acid and methyl jasmonate on rosmarinic acid production in Mentha × piperita cell suspension cultures. Plant Cell Tiss. Organ Cult., 108, 73–81. https://doi.org/10.1007/s11240-011-0014-8
- Li, Z., Yang, H., Wu, X., Guo, K., Li, J. (2014). Some aspects of salinity responses in peppermint (Mentha piperita L.) to NaCl treatment. Protoplasma, 252(3), 885–899. https://doi.org/10.1007/s00709-014-0728-7
- Lim, G.-H., Shine, M.B., de Lorenzo, L., Yu, K., Cui, W., Navarre, D., Hunt, A.G., Lee, J.-Y., Kachroo, A., Kachroo, P. (2016). Plasmodesmata localizing proteins regulate transport and signaling during systemic acquired immunity in plants. Cell Host Microbe, 19(4), 541–549. https://doi.org/10.1016/j.chom.2016.03.006
- Lv, J., Huang, H., Yu, L., Whent, M., Niu, Y., Shi, H., Wang, T.T.Y., Luthria, D., Charles, D., Yu, LL. (2012). Phenolic composition and nutraceutical properties of organic and conventional cinnamon and peppermint. Food Chem., 132(3), 1442–1450. https://doi.org/10.1016/j.foodchem.2011.11.135
- Maffei, M., Canova, D., Bertea, C.M., Scannerini, S. (1999). UV-A effects on photomorphogenesis and essential-oil composition in Mentha piperita. J. Photochem. Photobiol. B, Biol., 52(1–3), 105–110. https://doi.org/10.1016/S1011-1344(99)00110-4
- Mahendran, G., Rahman, L.-U. (2020). Ethnomedicinal, phytochemical and pharmacological updates on peppermint (Mentha × piperita L.). A review. Phytother. Res., 34(9), 2088–2139. https://doi.org/10.1002/ptr.6664
- Malik, N.A.A., Kumar, I.S., Nadarajah. K. (2020). Elicitor and receptor molecules: orchestrators of plant defense and immunity. Int. J. Mol. Sci., 21(3), 963. https://doi.org/10.3390/ijms21030963
- McKay, D.L., Blumberg, J.B. (2006). A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother. Res., 20(8), 619–633. https://doi.org/10.1002/ptr.1936
- Merely, P.G.F., Rocha-Guzmán, N.E., Mercado-Silva, E., Loarca-Piña, G., Reynoso-Camacho, R. (2014). Effect of chemical elicitors on peppermint (Mentha piperita) plants and their impact on the metabolite profile and antioxidant capacity of resulting infusions. Food Chem., 156, 273–278. https://doi.org/10.1016/j.foodchem.2014.01.101
- Métraux, J.P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W., Inverardi, B. (1990). Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science., 250(4983), 1004–1006. https://doi.org/10.1126/science.250.4983.1004
- Mimica-Dukić, N., Božin, B., Soković, M., Mihajlović, B., Matavulj, M. (2003). Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Med., 69(5), 413–419. https://doi.org/10.1055/s-2003-39704
- Mölders, W., Buchala, A., Métraux, J.-P. (1996). Transport of salicylic acid in tobacco necrosis virus-infected cucumber plants. Plant Physiol., 112(2), 787-792. https://doi.org/10.1104/pp.112.2.787
- Naksawat, M., Norkaew, C., Charoensedtasin, K., Roytrakul, S., Tanyong, D. (2023). Anti-leukemic effect of menthol, a peppermint compound, on induction of apoptosis and autophagy. Peer J., 11, e15049. https://doi.org/10.7717/peerj.15049
- Nazerieh, Z., Oraghi Ardebili, Z., Iranbakhsh, A.R. (2018). Potential benefits and toxicity of nanoselenium and nitric oxide in peppermint. Acta Agric. Sloven., 111(2), 357-368. https://doi.org/10.14720/aas.2018.111.2.11
- Nemati Lafmejani, Z., Jafari, A.A., Moradi, P., Moghadam, A.L. (2018). Impact of foliar application of copper sulphate and copper nanoparticles on some morpho-physiological traits and essential oil composition of peppermint (Mentha piperita L.). Herba Polonica., 64(2), 13–24.
- Pallas, J.A., Paiva, N.L., Lamb, C., Dixon, R.A. (1996). Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. Plant J., 10(2), 281–293. https://doi.org/10.1046/j.1365-313X.1996.10020281.x
- Park, Y.J., Baek, S.-A., Choi, Y., Kim, J.K., Park, S.U. (2019). Metabolic profiling of nine Mentha species and prediction of their antioxidant properties using chemo metrics. Molecules, 24(2), 258. https://doi.org/10.3390/molecules24020258
- Roodbari, N., Roodbari, S., Ganjali, A., Sabeghi Nejad, F., Ansarifar, M. (2013). The effect of salinity stress on growth parameters and essential oil percentage of peppermint (Mentha piperita L.). Int. J. Adv. Biol. Biomed. Res., 1(9), 1009–1015.
- Saharkhiz, M.J., Goudarzi, T. (2014). Foliar application of salicylic acid changes essential oil content and chemical compositions of peppermint (Mentha piperita L.). J. Essent. Oil Bear. Plants., 17(3), 435–440. https://doi.org/10.1080/0972060X.2014.892839
- Shah, J., Chaturvedi, R., Chowdhury, Z., Venables, B., Petros, R.A. (2014). Signaling by small metabolites in systemic acquired resistance. Plant J., 79(4), 645–658. https://doi.org/10.1111/tpj.12464
- Shah, J., Zeier, J. (2013). Long-distance communication and signal amplification in systemic acquired resistance. Front. Plant Sci., 4, 30. https://doi.org/10.3389/fpls.2013.00030
- Shulaev, V., León, J., Raskin, I. (1995). Is salicylic acid a translocated signal of systemic acquired resistance in tobacco? Plant Cell, 7(10), 1691–1701.
- Singh, A., Lim, G.-H., Kachroo, P. (2017). Transport of chemical signals in systemic acquired resistance. J. Integr. Plant Biol., 59(5), 336–344. https://doi.org/10.1111/jipb.12537
- Singh, R., Shushni, M.A., Belkheir, A. (2015). Antibacterial and antioxidant activities of Mentha piperita L. Arab. J. Chem., 8(3), 322–328. https://doi.org/10.1016/j.arabjc.2011.01.019
- Soheilikhah, Z., Modarresi, M., Karimi, N., Movafeghi, A. (2021). Qualitative and quantitative analysis of diosmin content of hyssop (Hyssopus officinalis) in response to salinity stress. Heliyon, 7(10), e08228. https://doi.org/10.1016/j.heliyon.2021.e08228
- Soleymani, F., Taheri, H., Shafeinia, A. (2015). Effects of gibberellic acid on gene expression of menthol biosynthesis pathway in peppermint (Mentha piperita L.). J. Adv. Chem. Eng., 2(2), 131–134.
- Soleymani, F., Taheri, H., Shafeinia, A. (2017). Relative expression of genes of menthol biosynthesis pathway in peppermint (Mentha piperita L.) after chitosan, gibberellic acid and methyl jasmonate treatments. Russ. J. Plant Physiol., 64(1), 59–66. https://doi.org/10.1134/S1021443717010150
- Sroka, Z., Fecka, I., Cisowski, W. (2005). Antiradical and anti-H2O2 properties of polyphenolic compounds from an aqueous peppermint extract. Z. Naturforsch. C, 60(11–12), 826–832. https://doi.org/10.1515/znc-2005-11-1203
- Tabbert, J.M., Schulz, H., Krähmer, A. (2022). Investigation of LED light qualities for peppermint (Mentha × piperita L.) cultivation focusing on plant quality and consumer safety aspects. Front. Food. Sci. Technol., 2, 852155. https://doi.org/10.3389/frfst.2022.852155
- Valko, M., Morris, H., Cronin, M. (2005). Metals, toxicity and oxidative stress. Curr. Med. Chem., 12(10), 1161– 1208. https://doi.org/10.2174/0929867053764635
- Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz- Jawhar, R., Ward, E., Uknes, S., Kessmann, H., Ryals, J. (1994). Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell, 6(7), 959–965. https://doi.org/10.1105/tpc.6.7.959
- Wang, C., El-Shetehy, M., Shine, M. B., Yu, K., Navarre, D., Wendehenne, D., Kachroo, A., Kachroo, P. (2014). Free radicals mediate systemic acquired resistance. Cell Rep., 7(2), 348–355. https://doi.org/10.1016/j.celrep.2014.03.032
- Wendehenne, D., Gao, Q. M., Kachroo, A., Kachroo, P. (2014). Free radical-mediated systemic immunity in plants. Curr. Opin. Plant Biol., 20, 127–134. https://doi.org/10.1016/j.pbi.2014.05.012
- Yalpani, N., Silverman, P., Wilson, T.M.A., Kleier, D.A., Raskin, I. (1991). Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell., 3(8), 809–818. https://doi.org/10.1105/tpc.3.8.809
- Yu, K., Soares, J.M., Mandal, M.K., Wang, C., Chanda, B., Gifford, A.N., Fowler, J.S., Navarre, D., Kachroo, A., Kachroo, P. (2013). A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity. Cell Rep., 3(4), 1266–1278. https://doi.org/10.1016/j.celrep.2013.03.030
- Zhao, H., Ren, S., Yang, H., Tang, S., Guo, C., Liu, M., Tao, Q., Ming, T., Xu H. (2022). Peppermint essential oil: its phytochemistry, biological activity, pharmacological effect and application. Biomed. Pharmacother., 154, 113559. https://doi.org/10.1016/j.biopha.2022.113559
- Zheljazkov, V.D., Craker, L.E., Xing, B. (2006). Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Environ. Exp. Bot., 58(1–3), 9–16. https://doi.org/10.1016/j.envexpbot.2005.06.008
Downloads
Download data is not yet available.
-
Robert Gruszecki,
Aneta Stawiarz,
Biostimulants containing amino acids in vegetable crop production
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 20 No. 6 (2021)
-
Ewa K. Puchalska,
OCCURRENCE OF SPIDER MITES (Prostigmata: Tetrnaychidae) AND PHYTOSEIID MITES (Mesostigmata: Phytoseiidae) AS THEIR POTENTIAL ENEMIES, ON NORWAY SPRUCE (Picea abies (L.)) AND ITS CULTIVARS GROWN IN ORNAMENTAL PLANT NURSERIES IN POLAND
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 13 No. 6 (2014)
-
Kazim Gündüz,
Onur Saraçoğlu,
Mustafa Özgen,
Sedat Serce,
ANTIOXIDANT, PHYSICAL AND CHEMICAL CHARACTERISTICS OF CORNELIAN CHERRY FRUITS (Cornus mas L.) AT DIFFERENT STAGES OF RIPENESS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 12 No. 4 (2013)
-
Renata Nurzyńska-Wierdak,
Bartłomiej Borowski,
Katarzyna Dzida,
YIELD AND CHEMICAL COMPOSITION OF BASIL HERB DEPENDING ON CULTIVAR AND FOLIAR FEEDING WITH NITROGEN
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 10 No. 1 (2011)
-
Elżbieta Paduch-Cichal,
Tomasz Krupa,
Ewa Mirzwa-Mróz,
Marek Stefan Szyndel,
Karol Staniszewski,
Wojciech Kukuła,
Elżbieta Mielniczuk,
Marcin Wit,
Wojciech Wakuliński,
Effect of virus infection on the fruit quality of sour cherry cultivar Łutówka
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 23 No. 2 (2024)
-
Magdalena Szczech,
Beata Kowalska,
Jacek S. Nowak,
Małgorzata Kunka,
Robert Maciorowski,
Microbial and physico-chemical responses of the soil to intensive onion and pepper cropping
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 24 No. 5 (2025)
-
Anna Chmielowiec-Korzeniowska,
Magdalena Ptaszek,
Piotr Baryła,
Tomasz Lipa,
Mirosław v,
POSSIBILITIES OF USING CHEMICAL AGENTS FOR THE PROTECTION OF GERBERA JAMESONII AGAINST PHYTOPHTHORA CRYPTOGEA
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 17 No. 5 (2018)
-
Agnieszka Szopa,
Marta Klimek-Szczykutowicz,
Karolina Jafernik,
Katarzyna Koc,
Halina Ekiert,
POT MARIGOLD (Calendula officinalis L.) – A POSITION IN CLASSICAL PHYTOTHERAPY AND NEWLY DOCUMENTED ACTIVITIES
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 3 (2020)
-
Sakineh Mohammadi Kohnhehshahri,
Yavuz Demir,
CHITOSAN AGAINST TO BORON TOXICITY IN MAIZE
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 20 No. 3 (2021)
-
Gustavo E. González-Terán,
Fernando C. Gómez-Merino,
Libia I. Trejo-Téllez,
EFFECTS OF SILICON AND CALCIUM APPLICATION ON GROWTH, YIELD AND FRUIT QUALITY PARAMETERS OF CUCUMBER ESTABLISHED IN A SODIC SOIL
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 3 (2020)
<< < 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.