Abstract
The impact of acetamiprid-based insecticides on the survival and activity of entomopathogenic nematodes (EPNs) was evaluated in laboratory, focusing on two species, Steinernema feltiae and Heterorhabditis bacteriophora. Despite variations in sensitivity, with S. feltiae showing greater susceptibility, both species maintained their ability to infect Galleria mellonella larvae after exposure. Exposure to Mospilan 20 SP® significantly decreased the reproductive capacity of S. feltiae (F = 443.215, p < 0.001), while H. bacteriophora showed greater resilience, especially when exposed to and Kobe 20 SP®. The ED50 values for H. bacteriophora increased over time with Kobe 20 SP® (0.46 ±0.04 at 24 h to 0.60 ±0.01 at 96 h), while Mospilan 20 SP® decreased the ED50 for S. feltiae (0.55 ±0.02 at 24 h to 0.64 ±0.03 at 96 h). The study highlights that the effects of systemic insecticides extend beyond immediate mortality, influencing reproductive potential and long-term viability, particularly for more sensitive species like S. feltiae. These findings raise important considerations for integrating EPNs into pest management strategies, especially in systems reliant on chemical pesticides. Further research is recommended to explore the broader ecological impacts of neonicotinoids on beneficial nematodes and their potential interactions with other biocontrol agents, aiming to enhance the sustainability of integrated pest management systems.
References
- Atwa, A.A., Shamseldean, M.S., Yonis, F.A. (2013). The effect of different pesticides on reproduction of entomopathogenic nematodes. Turk. J. Entomol., 37. https://doi.org/10.16970/entomoloji.41092
- Casida, J.E. (2010). Neonicotinoid metabolism: compounds, substituents, pathways, enzymes, organisms, and relevance. J. Agric. Food Chem., 59(7), 2923–2931. https://doi.org/10.1021/jf102438c
- El-Ashry, R.M., Ali, M.A., Ali, A.A. (2020). The joint action of entomopathogenic nematodes mixtures and chemical pesticides on controlling Helicoverpa armigera (Hübner). Egyp. Acad. J. Biol. Sci., F. Toxicol. Pest Control, 12(1), 101–116. https://doi.org/10.21608/eajbsa.2020.62442.1066
- Jeschke, P., Nauen, R. (2008). Neonicotinoids – from zero to hero in insecticide chemistry. Pest Manag. Sci., 64, 1084–1098. https://doi.org/10.1002/ps.1631
- Kaya, H.K., Stock, S.P. (eds.) (1997). Chapter VI. Techniques in insect nematology. In: Nematodes as Biological Control Agents. Academic Press, 213–250. https://doi.org/10.1016/B978-012432555-5/50016-6
- Koppenhöfer, A.M., Brown, I.M., Gaugler, R., Grewal, P.S., Kaya, H.K., Klein, M.G. (2000). Synergism of entomopathogenic nematodes and imidacloprid against white grubs: greenhouse and field evaluation. Biol. Control, 19(3), 245–251. https://doi.org/10.1006/bcon.2000.0863
- Koppenhöfer, A. M., Cowles, R. S., Cowles, E. A., Fuzy, E. M., & Baumgartner, L. (2002). Comparison of neonicotinoid insecticides as synergists for entomopathogenic nematodes. Biol.Control, 24(1), 90–97. https://doi.org/10.1046/j.1570-7458.2003.00008.x
- Koppenhöfer, A.M., Foye, S. (2024). Interactions between agrochemicals and biological control agents. In: Entomopathogenic Nematodes as Biological Control Agents. CABI, 494–518. https://doi.org/10.1079/9781800620322.0027
- Koppenhöfer, A.M., Grewal, P.S. (2005). Compatibility and interactions between biological control agents and chemical pesticides for integrated pest management. J. Nematol., 37(2), 178–189. https://doi.org/10.1079/9780851990170.0363
- Kruk, K., Dzięgielewska, M. (2020). The influence of acetamiprid and chlorpyrifos on the biological activity of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae). Prog. Plant Protect., 60(3), 179–185. https://doi.org/10.14199/PPP-2020-020
- Kundoo, A.A., Dar, S.A., Mushtaq, M., Bashir, Z., Dar, M.S., Gul, S., Ali, M.T., Gulzar, S. (2018). Role of neonicotinoids in insect pest management: A review. J. Entomol. Zool. Stud., 6(1), 333–339.
- Laznik, Ž., Trdan, S. (2014). The influence of insecticides on the viability of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under laboratory conditions. Pest Manag. Sci., 70(5), 784–789. https://doi.org/10.1002/ps.3614
- Ligtelijn, M., Barmentlo, S.H., van Gestel, C.A.M. (2024). Field-realistic doses of the neonicotinoid acetamiprid impact natural soil arthropod community diversity and structure. Environ. Pollut., 359, 124568. https://doi.org/10.1016/j.envpol.2024.124568
- Miranda, M.P., Yamamoto, P.T., Garcia, R.B., Lopes, J.P., Lopes, J.R. (2016). Thiamethoxam and imidacloprid drench applications on sweet orange nursery trees disrupt the feeding and settling behavior of Diaphorina citri (Hemiptera: Liviidae). Pest Manag. Sci., 72, 1785–1793.https://doi.org/10.1002/ps.4213
- Morrissey, C.A., Mineau, P., Devries, J.H., Sanchez-Bayo, F., Liess, M., Cavallaro, M.C., Liber, K. (2015). Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates. Environ. Int., 74, 291–303. https://doi.org/10.1016/j.envint.2014.10.024
- Özdemir, E., İnak, E., Evlice, E., Yüksel, E., Delialioğlu, R.A., Susurluk, I.A. (2021). Effects of insecticides and synergistic chemicals on the efficacy of the entomopathogenic nematode Steinernema feltiae (Rhabditida: Steinernematidae) against Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Crop Protection, 144, 105605. https://doi.org/10.1016/j.cropro.2021.105605
- Özdemir, E., İnak, E., Evlice, E., Laznik, Z. (2020). Compatibility of entomopathogenic nematodes with pesticides registered in vegetable crops under laboratory conditions. J. Plant Dis. Protect., 127, 529–535. https://doi.org/10.1007/s41348-020-00371-9
- Polavarapu, S., Koppenhöfer, A.M., Barry, J.D., Holdcraft, R.J., Fuzy, E.M. (2007). Entomopathogenic nematodes and neonicotinoids for remedial control of oriental beetle, Anomala orientalis (Coleoptera: Scarabaeidae), in highbush blueberry. Crop Prot., 26, 1266–1271. https://doi.org/10.1016/j.cropro.2006.10.026
- Ramirez, K.S., Döring, M., Eisenhauer, N., Gardi, C., Ladau, J., Leff, J.W., Lentendu, G., Lindo, Z., Rillig, M.C., Russell, D., Scheu, S., John, M.G.S., de Vries, F.T., Wubet, T., van der Putten, W.H., Wall, D.H. (2015). Toward a global platform for linking soil biodiversity data. Front. Ecol. Evol., 3, 91. https://doi.org/10.3389/fevo.2015.00091
- Ritz, C., Baty, F., Streibig, J.C., Gerhard, D. (2015). Dose-response analysis using R. PLOS ONE, Simon-Delso, N., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Chagnon, M., Downs, C., et al. (2015). Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action, and metabolites. Environ. Sci. Pollut. Res. Int., 22(1), 5–34. https://doi.org/10.1007/s11356-014-3470-y
- StatSoft Inc. (2014). STATISTICA Data Analysis Software System, Version 12.0, 1984-2014 (No. 13). TIBCO Software Inc.
- Stefanovska, T., Luckhart, S., Ripa, L., Stevens, G., Lewis, E. (2023). Steinernema carpocapsae. Trends Parasitol. 39(5), 400–401. https://doi.org/10.1016/j.pt.2023.01.002
- Stefanovska, T., Skwiercz, A., Pidlisnyuk, V., Boroday, V., Medkow, A., Zhukov, O. (2024). Effect of the biostimulants of microbiological origin on the entomopathogenic and plant parasitic nematodes from Miscanthus × Giganteus plantations. J. Hort. Res., 32(1), 13–24. https://doi.org/10.2478/johr-2024-0003
- Ulu, T.C. (2023). Effect of selected pesticides on the orientation of entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae). Turk. J. Entomol., 47(3), 339–349. https://doi.org/10.16970/entoted.1345508
- Ulu, T.C., Sadic, B., Susurluk, I.A. (2016). Effects of different pesticides on virulence and mortality of some entomopathogenic nematodes. Invert. Surviv. J., 13(1), 111–115. https://doi.org/10.25431/1824-307X/isj.v13i1.111-115
- Vanegas, L.H. and Paula, G.A. (2016). Log-symmetric distributions. Statistical properties and parameter estimation. Braz. J. Probab. Stat., 30, 196–220. https://doi.org/10.1214/14-BJPS272
- White, G.F. (1927). A method for obtaining infective nematode larvae from cultures. Science, 66, 302–303.
Downloads
Download data is not yet available.
-
Wenjiao Wang,
Shifeng Wang,
Ye Guo,
Meilan Li,
Leiping Hou,
EXPRESSION AND CHARACTERISATION OF CUCUMBER FRUIT FLESH THICKNESS-RELATED GENE CSA2M058670.1
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 2 (2020)
-
Yasin Ozdemir,
Mehmet Emin Akcay,
Sezai Ercisli,
Mehmet Ozkan,
Ugur Ozyurt,
PHYSICAL, CHEMICAL, SENSORIAL AND BIOACTIVE CHARACTERISTICS OF LOCAL AND STANDARD PEAR CULTIVARS IN TURKEY
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 15 No. 3 (2016)
-
Maria Licznar-Małańczuk,
Iwona Kwiecińska,
Application of living mulch in rows of the apple trees on several rootstocks – long-term evaluation
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 22 No. 4 (2023)
-
Irena Januškaitienė,
Sandra Sakalauskienė,
DYNAMICS OF PHOTOSYNTHETIC AND OXIDATIVE STRESS PARAMETERS OF TWO SPINACH SPECIES AFTER SHORT-TERM LOW UV-B RADIATION EFFECT
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 1 (2019)
-
Xue-mei Wu,
Zhi-tian Zuo,
Qing-zhi Zhang,
Yuan-zhong Wang,
EFFECT OF PROVENANCE AND WATER STRESS ON BIOMASS AND POLYPHYLLIN CONTENT IN THE MEDICINAL PLANT Paris polyphylla Smith var. yunnanensis
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 2 (2019)
-
Begum Kaplan,
Selda Duraklioglu,
Kenan Turgut,
SUSTAINABLE MICROPROPAGATION OF SELECTED Stevia rebaudiana Bertoni GENOTYPES
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 6 (2019)
-
Hanna Rekosz-Burlaga,
Edyta Tokarczyk,
Jarosław Szczepaniak,
Agata Goryluk-Salmonowicz,
ANTAGONISTIC ACTIVITY OF PLANT-ASSOCIATED MICROORGANISMS AGAINST Phytophthora infestans
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 15 No. 6 (2016)
-
Kazim Gündüz,
Onur Saraçoğlu,
Mustafa Özgen,
Sedat Serce,
ANTIOXIDANT, PHYSICAL AND CHEMICAL CHARACTERISTICS OF CORNELIAN CHERRY FRUITS (Cornus mas L.) AT DIFFERENT STAGES OF RIPENESS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 12 No. 4 (2013)
-
Krystyna Winiarczyk,
Dominika Czerska ,
Bożena Denisow,
Ewelina Chrzanowska ,
Jacek Pietrusiewicz,
Regenerative potential and its variability in different topophysical zones of Kalanchoe daigremontiana leaves in in vitro culture conditions
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 23 No. 2 (2024)
-
Zahoor Ahmad,
Ejaz Ahmad Warraich,
Muhammad Aamir Iqbal,
Celaleddin Barutçular,
Hesham Alharby,
Atif Bamagoos,
Fatih Cig,
Ayman El Sabagh,
FOLIAGE APPLIED SILICON AMELIORATES DROUGHT STRESS THROUGH PHYSIO-MORPHOLOGICAL TRAITS, OSMOPROTECTANTS AND ANTIOXIDANT METABOLISM OF CAMELINA (Camelina sativa L.) GENOTYPES
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 20 No. 4 (2021)
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.