Abstract
Pseudomonas ‘gingeri’ is the cause of ginger blotch disease of the white button mushrooms (Agaricus bisporus). The occurrence of the disease in the cultivation results in the appearance of ginger discolouration on the mushroom caps. Currently, there is no effective method of protecting the mushroom from bacterial infection. Therefore, the selection of appropriate substrates for mushroom cultivation and environmental cultivation conditions, such as relative humidity, are of high importance in controlling the disease. The aim of the study was to evaluate the effect, on the development of ginger blotch, of two types of peat-based casing soil, with different water holding capacity, and two different air relative humidities inside the mushroom growing chamber. The cultivation trials were artificially infected with two P. ‘gingeri’ isolates, at two different inoculation doses. The blotch disease incidence on the heavy casing soil, which characterised lower water holding capacity, was significantly higher than on the medium one, regardless of the number of bacterial cells and bacterial isolate. The results also demonstrated a significant correlation between higher levels of air humidity (90% in the cultivation chamber) and the ginger blotch prevalence. It was determined that the type of casing soil and the level of air humidity in the mushroom growing room are of crucial importance for efficient mushroom cultivation. These factors can also play a significant role in preventing against bacterial disease development.
References
- Beveridge, T.J. (2001). Use of the Gram stain in microbiology. Biotech. Histochem. 76(3), 111–118.
- Braat, N., Koster M.C., Wösten, H.A.B. (2022). Beneficial interactions between bacteria and edible mushrooms. Fungal Biol. Rev., 39, 60–72. https://doi.org/10.1016/j.fbr.2021.12.001
- Buchanan, R.E., Gibbons, N.E. (1974). Bergey’s manual of determinative bacteriology, 8th ed. Williams and Wilkins, Baltimore, USA, 217–243.
- Carrasco, J., Navarro, M.J., Santos, M.F., Diánez, F., Gea, F.J. (2015). Incidence, identification and pathogenicity of Cladobotryum mycophilum, causal agent of cobweb disease on Agaricus bisporus mushroom crops in Spain. Ann. Appl. Biol., 168, 214–224. https://doi.org/10.1111/aab.12257
- Dias, E.S., Zied, D.C., Pardo-Gimenez, A. (2021). Revisiting the casing layer. Casing materials and management in Agaricus mushroom cultivation. Sci. Agrotechnol., 45(2), https://doi.org/10.1590/1413-70542021450001R21
- Fletcher, J.T., Gaze, R.H. (2008). Mushroom pest and disease control. A color handbook. Manson Publishing, London, UK, 192 p.
- Gandy, D.G. (1967). The epidemiology of bacterial blotch of the cultivated mushroom. Rep. Glasshouse Crops Res. Inst., 966, 150–154.
- Gea, F.J., Carrasco, J., Santos, M., Diánez, F., Navarro, M.J. (2013). Incidence of Lecanicillium fungicola in white-button mushroom (Agaricus bisporus) cultivated with two types of casing soil. J. Plant Pathol., 95(1), 163–166.
- Gea, F.J., Navarro, M.J., Santos, M., Diánez, F., Carrasco, J. (2021). Control of fungal diseases in mushroom crops while dealing with fungicide resistance. A review. Microorganisms, 9(3), 585. https://doi.org/10.3390/microorganisms9030585
- Hugh, R., Leifson, E. (1953). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J. Bacteriol., 66(1), 24–26.
- King, E.O., Ward, M.K., Raney, D.E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clinical Med., 44, 301–307.
- Lomax, K.M. (2007). Dew point temperature related to wet mushroom caps. Mushroom News, 55(1), 4–10.
- Lelliott, R.A., Billing, E., Hayward, A.C. (1966). A determinative scheme for the fluorescent plant pathogenic pseudomonads. J. Appl. Bacteriol., 29(3), 470–489. https://doi.org/10.1111/j.1365-2672.1966.tb03499.x
- Mamoun, M., Moquet, F., Savoie, J.M., Devesse, C., Ramos-Guedes-Lafargue, M., Oliver, J.M., Arpin, N. (1999). Agaricus bisporus susceptibility to bacterial blotch in relation to environment: biochemical studies. FEMS Microbiol. Lett., 181(1), 131–136. https://doi.org/10.1111/j.1574-6968.1999.tb08835.x
- McGee, C.F. (2018). Microbial ecology of the Agaricus bisporus mushroom cropping process. Appl. Microbiol. Biotechnol., 102 (3), 1075–1083. https://doi.org/10.1007/s00253-017-8683-9
- Moquet, F., Mamoun, M., Olivier, J.M. (1996). Pseudomonas tolaasii and tolaasin. Comparison of symptom induction on a wide range of Agaricus bisporus strains. FEMS Microbiol. Lett. 142, 99–103. https://doi.org/10.1016/0378-1097(96)00250-9
- Moquet, F., Mamoun, M., Ramos-Guedes-Lafargue, M., Olivier, J.M., Savoie, J.M. (1998). Differences in susceptibility of Agaricus bisporus strains to bacterial blotch and in natural cap colour related to compost composition. Plant Breed. 117(4), 385–388. https://doi.org/10.1111/j.1439-0523.1998.tb01958.x
- Navarro, M.J., Gea, F.J., González, A.J. (2018). Identification, incidence and control of bacterial blotch disease in mushroom crops by management of environmental conditions. Sci. Hort., 229, 10–18. https://doi.org/10.1016/j.scienta.2017.10.023
- Navarro, M.J., Carrasco, J., Gea, F.J. (2021). The role of water content in the casing layer for mushroom crop production and the occurrence of fungal diseases. Agronomy, 11, 2063. https://doi.org/10.3390/agronomy11102063
- Noble, R., Dobrovin-Pennington, D. (2024). Physicochemical characterisation of casings in relation to mushroom (Agaricus bisporus) cropping performance. Fungal Biol., 128, 1698–1704. https://doi.org/10.1016/j.funbio.2024.02.004
- Noble, R., Fermor, T.R., Lincoln, S., Dobrovin-Pennington, A., Evered, C.E., Mead, A. (2003). Primordia initiation of mushroom (Agaricus bisporus) strains on axenic casing materials. Mycologia, 95 (4), 620–629. https://doi.org/10.1080/15572536.2004.11833066
- Olivier, J.M., Mamoun, M., Munsch, P. (1997). Standarization of a method to assess mushroom blotch resistance in cultivation and wild Agaricus bisporus strains. Canad. J. Plant Pathol., 19, 36–42. https://doi.org/10.1080/07060669709500569
- Paine, S.G. (1919). Studies in bacteriosis II. A brown blotch disease of cultivated mushrooms. Ann. Appl. Biol., 5, 206–219.
- Pardo, A., De Juan, J.A., Pardo, J.E. (2002). Bacterial activity in different types of casing during mushroom cultivation (Agaricus bisporus (Lange) Imbach). Acta Aliment., 31, 327–342. https://doi.org/10.1556/aalim.31.2002.4.3
- Sapers, G.M., Miller, R.L., Pilizota, V., Kamp, F. (2001). Shelf life extension of fresh mushrooms (Agaricus bisporus) by application of hydrogen peroxide and browning inhibitors. J. Food Sci., 66(2), 362–366. https://doi.org/10.1111/j.1365-2621.2001.tb11347.x
- Siwulski, M., Niedzielski, P., Budka, A., Budzyńska, S., Kuczyńska-Kippen, N., Kalač, P., Sobieralski, K., Mleczek, M. (2022). Patterns of changes in the mineral composition of Agaricus bisporus cultivated in Poland between 1977 and 2020. J. Food Compos. Anal., 112, 104660. https://doi.org/10.1016/j.jfca.2022.104660
- Soler-Rivas, C., Jolivet, S., Arpin, N., Olivier, J.M., Wichers, H.J. (1999). Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus. FEMS Microbiol. Rev., 23, 591–614. https://doi.org/10.1016/S0168-6445(99)00023-6
- Szumigaj-Tarnowska, J., Uliński, Z. (2022). Wpływ ilości wody użytej do nawodnienia okrywy na rozwój chorób bakteryjnych pieczarki [The effect of amount of water used to irrigate casing soil on the development of bacterial diseases of the white button]. Post. Ochr. Roślin [Prog. Plant Prot.], 62(3), 167–173. https://dx.doi.org/10.14199/ppp-2022-019
- Ślusarski, C., Uliński Z., Szumigaj-Tarnowska, J. (2012). Wpływ typu ziemi okrywowej na porażenie uprawy pieczarki dwuzarodnikowej przez dwa izolaty grzyba Cladobotryum dendroides [Effect of casing soil type on the infection of the white button mushroom culture with two isolates of Cladobotryum dendroides]. Post. Ochr. Roślin [Prog. Plant Prot.], 52(2), 391-396. https://dx.doi.org/10.14199/ppp-2012-071
- Taparia, T., Hendrix, E., Hendriks, M., Krijger, M., Nijhuis, E., de Boer, W., van der Wolf, J. (2021a). Casing soil microbiome mediates suppression of bacterial blotch of mushrooms during consecutive cultivation cycles. Soil Biol. Biochem., 155, 108161. https: //doi.org/10.1016/j.soilbio.2021.108161
- Taparia, T., Hendrix, E., Hendriks, M., Krijger, M., de Boer, W., van der Wolf, J. (2021b). Comparative studies on the disease prevalence and population dynamics of ginger blotch and brown blotch of button mushrooms. Plant Dis., 105, 542–547. https://doi.org/10.1094/PDIS-06-20-1260-RE
- Wong, W.C., Fletcher, J.T., Unsworth, B.A., Preece, T.F. (1982). A note on ginger blotch, a new bacterial disease of the cultivated mushroom, Agaricus bisporus. J. Appl. Bacteriol., 52, 43–48. https://doi.org/10.1111/j.1365-2672.1982.tb04371.x
- Wong, W.C., Preece, T.F. (1982). Pseudomonas tolaasii in cultivated mushroom (Agaricus bisporus) crops: numbers of the bacterium and symptom development on mushrooms grown in various environments after artificial inoculation. J. Appl. Bacteriol., 53, 87–96. https://doi.org/10.1111/j.1365-2672.1982.tb04737.x
Downloads
Download data is not yet available.
-
Barbara Skwaryło-Bednarz,
Patrycja Maria Stępniak,
Agnieszka Jamiołkowska,
Marek Kopacki,
Anna Krzepiłko,
Hanna Klikocka,
AMARANTH SEEDS AS A SOURCE OF NUTRIENTS AND BIOACTIVE SUBSTANCES IN HUMAN DIET
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 6 (2020)
-
Mehdi Oraei,
Gholamreza Gohari,
Sima Panahirad,
Elnaz Zareei,
Fariborz Zaare-Nahandi,
EFFECT OF SALICYLIC ACID FOLIAR APPLICATION ON Vitis vinifera L. cv. ‘SULTANA’ UNDER SALINITY STRESS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 2 (2019)
-
Sadegh Azizifar,
Vahid Abdossi,
Rahmatollah Gholami,
Mehrdad Ghavami,
Ali Mohammadi Torkashvand,
EFFECT OF SALICYLIC ACID AND KAOLIN ON YIELD, PHYSIOLOGICAL TRAITS, AND FATTY ACID COMPOSITION IN OLIVE CULTIVARS UNDER REGULATED DEFICIT IRRIGATION
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 21 No. 3 (2022)
-
Eugeniusz Kołota,
Katarzyna Adamczewska-Sowińska,
YIELD, MORPHOLOGICAL CHARACTERISTICS AND NUTRITIONAL VALUE OF NEW PSEUDOSTEM – TYPE CULTIVARS OF JAPANESE BUNCHING ONION
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 13 No. 5 (2014)
-
İbrahim Kahramanoğlu,
Volkan Oktan,
Chuying Chen,
Zengyu Gan,
Chunpeng Wan,
Postharvest hydrothermal treatments to maintain quality of ‘Newhall’ navel orange.
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 21 No. 2 (2022)
-
Safwan Shiyab,
Bassam Al-Qarallah,
Muhanad Akash,
INFLUENCE OF SALINITY ON GROWTH AND ORGANIC COMPOUNDS CONTENT OF CARROT (Daucus carota L.)
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 6 (2019)
-
Çiğdem Alev Özel,
EFFICIENT in vitro PLANT REGENERATION FROM CULTURED LEAF AND PETIOLE EXPLANTS OF Isatis constricta Davis
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 17 No. 3 (2018)
-
Julė Jankauskienė,
Aušra Brazaitytė,
Viktorija Vaštakaitė Kairienė,
Vytautas Zalatorius,
EFFECTS OF PEAT AND PEAT-ZEOLITE SUBSTRATES ON QUALITY, GROWTH INDICES OF CUCUMBER SEEDLINGS AND CROP PRODUCTIVITY
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 5 (2019)
-
Robert Kalbarczyk,
Eliza Kalbarczyk,
THE ROLE OF SUNSHINE DURATION AND AIR TEMPERATURE IN SHAPING VARIABILITY IN DEVELOPMENTAL STAGES OF THE CUCUMBER (Cucumis sativus L.) IN POLAND, 1966–2005
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 11 No. 3 (2012)
-
Erdal Ağlar,
Ahmet Sümbül,
Orhan Karakaya,
Burhan Ozturk,
DETERMINING OF THE FRUIT CHARACTERISTICS OF PISTACHIO GRAFTED ON WILD Pistacia terebinthus L. UNDER THE CENTRAL KELKIT BASIN (TURKEY) ECOLOGICAL CONDITIONS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 6 (2020)
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.