Skip to main navigation menu Skip to main content Skip to site footer

ONLINE FIRST

Articles

Differential effects of plant growth regulators and carbohydrates on in vitro propagation of Scutellaria barbata D. Don

DOI: https://doi.org/10.24326/asphc.2025.5514
Submitted: 13 March 2025
Published: 13.11.2025

Abstract

Experiments were conducted to establish the procedure for sterilizing single-node explants from the mother plant of barbed skullcap Scutellaria barbata L7 line (characterized by high scutellarin content) grown in the greenhouse and to induce organogenesis. The effect of different PGRs and carbohydrates on shoot number and shoot length was investigated. The largest number of shoots per explant (16.4) was formed after treatment with 3 mg·dm−3 BAP. Shoot multiplication occurred most intensively on medium with the combination of 0.09 M sucrose and 1 mg·dm−3 KIN (9.8 shoots per explant), and their elongation on the medium with 1 mg·dm−3 GA3 (10.0 cm). The rhizogenesis process was intensified by using 2 mg·dm−3 IBA (87%). Regenerated, rooted plants were acclimatized to ex vitro conditions, planted in pots, and placed in a greenhouse.

References

  1. Akyüz, B. (2025). Effect of different carbon sources and concentrations on in vitro propagation of chestnut. Plant Cell Tiss. Organ Cult., 160, 25. https://doi.org/10.1007/s11240-024-02960-w
  2. Ahmad, A., Ahmad, N., Anis, M., Alatar, A.A., Abdel-Salam, E.M., Qahtan, A.A., Faisal, M. (2021). Gibberellic acid and thidiazuron promote micropropagation of an endangered woody tree (Pterocarpus marsupium Roxb.) using in vitro seedlings. Plant Cell Tiss. Organ Cult., 144, 449–462. https://doi.org/10.1007/s11240-020-01969-1
  3. Andini, R., Luthfia, N., Rahmawati, M., Bakri, S., Akhir, J., M.I. Sulaiman, M.I. (2020). In-vitro propagation: application of gibberellic acid (GA3) in enhancing germination in ‘Jernang’ or ‘Dragon Blood’ (Daemonorops sp.). The 1st International Conference on Agriculture and Bioindustry 2019 IOP Conf. Ser.: Earth Environ. Sci., 425, 012067. https://doi.org/10.1088/1755-1315/425/1/012067
  4. Bavnhøj, L., Driller, J.H., Zuzic, L., Stange, A.D., Schiøtt, B., Pedersen, B.P. (2023). Structure and sucrose binding mechanism of the plant SUC1 sucrose transporter. Nat. Plants, 9, 938–950. https://doi.org/10.1038/s41477-023-01421-0
  5. Boga, A., Ram, B., Reddy, G.R.S. (2012). Effect of benzyl amino purine and gibberellic acid on in vitro shoot multiplication and elongation of Dalbergia latifolia Roxb. An important multipurpose tree. Res. Article Biotechnol. Bioinf. Bioeng., 2(1), 597–602.
  6. Brearley, T.A., Vaidya, B.N., Joshee, N. (2014). Cytokinin, Carbon Source, and Acclimatization Requirements for in Vitro Propagation of Scutellaria barbata D. Don and Scutellaria racemosa Pers. Am. J. Plant Sci., 5(24), 3662. https://doi.org/10.4236/ajps.2014.524382
  7. Chen, Q., Rahman, K., Wang, S.J., Zhou, S., Zhang, H. (2020). Scutellaria barbata: a review of chemical constituents, pharmacological activities and clinical applications. Curr. Pharm. Des., 26(1), 160–175. https://doi.org/10.2174/1381612825666191216124310
  8. Chen, V., Staub, R.E., Baggett, S., Chimmani, R., Tagliaferri, M., Cohen, I., Shtivelman, E. (2012). Identification and analysis of the active phytochemicals from the anti-cancer botanical extract Bezielle. PLoS ONE 7(1), e30107. https://doi.org/10.1371/journal.pone.0030107
  9. Ciereszko, I. (2018). Regulatory roles of sugars in plant growth and development. Acta Soc. Bot. Pol., 87(2), 3583.
  10. Ćosić, T., Savić, J., Raspor, M., Cingel, A., Ghalawnji, N., Vinterhalter, B., Ninković, S. (2020). Effects of different types of sugars and plant growth regulators on kohlrabi seedling growth and development in vitro. Arch. Biol. Sci., 72(3), 349–357. https://doi.org/10.2298/ABS200622029C
  11. Daksa, J., Abera, B., Taddese, T. (2015). Micropropagation of Phytolacca dodecandra L’Herit (Endod var. E-44). Afr. J. Biotechnol., 14(2), 108–118. https://doi.org/10.5897/AJB2013.12008
  12. Dyduch-Siemińska, M., Gawroński, J. (2024). The influence of cytokinin on the multiplication efficiency and genetic stability of Scutellaria baicalensis regenerants in in vitro culture conditions. Appl. Sci., 14(11), 4791. https://doi.org/10.3390/app14114791
  13. Feng, X.-S., Yan, W., Bai, L.-H., Wang, K., Chen, X.-Q. (2021). neo-clerodane diterpenoids from the aerial parts of Scutellaria barbata with anti-inflammatory activity. Chem. Biodiv., 18(12), e2100693. https://doi.org/10.1002/cbdv.202100693
  14. Figas, A., Tomaszewska-Sowa, M., Gruszka, Z. (2025). Cultivation of Siberian Motherwort plants (Leonurus sibiricus L.) in in vitro culture. Agronomy, 15(1), 183. https://doi.org/10.3390/agronomy15010183
  15. Gao, J., Yin, W., Corcoran, O. (2019). From Scutellaria barbata to BZL101 in cancer patients: phytochemistry, pharmacology, and clinical evidence. Nat. Prod. Commun., 14 (10), 1–12. https://doi.org/10.1177/1934578X19880645
  16. Gharari, Z., Bagheri, K., Sharafi A. (2022). High-frequency adventitious shoot organogenesis from in vitro stem explants of Scutellaria araxensis Grossh. BioTechnologia, 103(2), 143–151. https://doi.org/10.5114/bta.2022.116208
  17. Grzegorczyk-Karolak, I., Kuźma, Ł., Wysokińska, H. (2015). The effect of cytokinins on shoot proliferation, secondary metabolite production and antioxidant potential in shoot cultures of Scutellaria alpina. Plant Cell Tiss. Organ Cult., 122(3), 699–708. https://doi.org/10.1007/s11240-015-0804-5
  18. Hnatuszko-Konka, K., Gerszberg, A., Weremczuk-Jeżyna, I., Grzegorczyk-Karolak, I. (2021). Cytokinin signaling and de novo shoot organogenesis. Genes, 12, 265. https://doi.org/10.3390/genes12020265
  19. Irvin, L., Zavala Ortiz, Y., Rivera, K.R., Nanda Vaidya, B., Sherman, S.H., Batista, R.A., Negrón Berríos, J.A., Joshee, N., Arun, A. (2021). Micropropagation of rare Scutellaria havanensis Jacq. and Preliminary Studies on Antioxidant Capacity and Anti-Cancer Potential. Molecules, 26(19), 5813. https://doi.org/10.3390/molecules26195813
  20. Joshee, N., Mentreddy, S., Yadav, A.K. (2007). Mycorrhizal fungi and growth and development of micropropagated Scutellaria integrifolia plants. Ind. Crops Prod., 25(2), 169–177. https://doi.org/10.1016/j.indcrop.2006.08.009
  21. Kara, N., Baydar, H. (2012). Effects of different explant sources on micropropagation in lavender (Lavandula sp.). J. Essent. Oil Bear. Plants, 15(2), 250 – 255. https://doi.org/10.1080/0972060X.2012.10644043
  22. Kim, S.-H., Zebro, M., Jang, D.-C., Sim, J.-E., Park, H.-K., Kim, K.-Y., Bae, H.-M., Tilahun, S., Park, S.-M. (2023). Optimization of Plant Growth Regulators for In Vitro Mass Propagation of a Disease-Free ‘Shine Muscat’ Grapevine Cultivar. Curr. Iss. Mol. Biol., 45(10), 7721–7733. https://doi.org/10.3390/cimb45100487
  23. Koike, I., Watanabe, S., Okazaki, K., Hayashi, K.I., Kasahara, H., Shimomura, K., Umehara, M. (2020). Endogenous auxin determines the pattern of adventitious shoot formation on internodal segments of ipecac. Planta, 251(3), 73. https://doi.org/10.1007/s00425-020-03367-5
  24. Kumari, S., Fatmi, U., Shukla, P. (2024). Sterilization protocol of nodal explants for in vitro propagation of lavender (Lavandula angustifolia). Plant Arch., 24(2), 1053–1057. https://doi.org/10.51470/PLANTARCHIVES.2024.v24.no.2.148
  25. Kurepa, J., Smalle, J.A. (2022). Auxin/Cytokinin Antagonistic Control of the Shoot/Root Growth Ratio and Its Relevance for Adaptation to Drought and Nutrient Deficiency Stresses. Int. J. Mol. Sci., 23, 1933. https://doi.org/10.3390/ijms23041933
  26. Lema-Rumińska, J., Sadowska, K., Tymoszuk, A., Andrzejewska, J. (2023). Scutellarin and other metabolites as well as morphological and molecular characterization of the Scutellaria barbata lines from in vitro and in vivo cultivation. Ind. Crops Prod., 195, 116464. https://doi.org/10.1016/j.indcrop.2023.116464
  27. Li, S.T., Xu, D., Jia, J., Zou, W., Liu, JY., Wang, Y., Zhang, K., Zheng, X., Ma, Y.-Y., Zhang, X., Zhao, D.-G. (2023). Structure and anti-inflammatory activity of neo-clerodane diterpenoids from Scutellaria barbata. Phytochem., 213, 113771. https://doi.org/10.1016/j.phytochem.2023.113771
  28. Madhulatha, P., Kirubakaran, S.I., Sakthivel, N. (2006). Effects of carbon sources and auxins on in vitro propagation of banana. Biol. Plant., 50, 782–784. https://doi.org/10.1007/s10535-006-0131-0
  29. Mganga, S.C., Karanja, B.K., Gesimba, R.M., Abihudi, S.A. (2025). Optimization of surface sterilization protocol for in vitro initiation of African star grass (Hypoxis schimperi). EJFOOD, 7(4), 44–48. https://doi.org/10.24018/ejfood.2025.7.4.931
  30. Mishra, A.K., Tiwari, K.N., Mishra, P., Tiwari, S.K., Mishra, S.K., Saini, R. (2019). Effect of cytokinin and MS medium composition on efficient shoot proliferation of Nyctanthes arbor-tristis L. through cotyledonary node explant and evaluation of genetic fidelity and antioxidant capacity of regenerants. S. Afr. J. Bot., 127, 284–292. https://doi.org/10.1016/j.sajb.2019.09.008
  31. Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  32. Naidu Mahadev, M., Panathula, C., Naidu, C. (2014). Impact of different carbohydrates and their concentrations on in vitro regeneration of Solanum viarum (Dunal) – an important anticancer medicinal plant. Am. J. Plant Sci., 5(1), 200–204. http://dx.doi.org/10.4236/ajps.2014.51026
  33. Nurhanis, S.E., Wulandari, R.S., Suryantini, R. (2019). Variations of IAA Concentration to the Growth of Sengon Tissue Culture. IOP Conference Series: Earth and Environmental Science, 394, The 2nd International Conference on Tropical Silviculture: Forest Research and Innovation for Sustainable Development 10–11 September 2019, Bogor, Indonesia.. https://doi.org/10.1088/1755-1315/394/1/012024
  34. Panathula, C.S., Mahadev, M.D., Naidu, C.V. (2014). Effect of different carbohydrates on in vitro plant regeneration of Centella asiatica (L.) – an important antijaundice medicinal plant. I. J. Med. Aromat. Plants, 4(1), 41–47.
  35. Pant, B. (2014). Application of plant cell and tissue culture for the production of phytochemicals in medicinal plants. In: R. Adhikari, S. Thapa (eds). Infectious Diseases and Nanomedicine II. Adv. Exp. Med. Biol., 808, 25–39. https://doi.org/10.1007/978-81-322-1774-9_3
  36. Pasternak, T.P., Steinmacher, D. (2024). Plant growth regulation in cell and tissue culture in vitro. Plants, 13(2), 327. https://doi.org/10.3390/plants13020327
  37. Perez, A.T., Arun, B., Tripathy, D., Tagliaferri, M.A., Shaw, H.S., Kimmick, G.G., Cohen, I., Shtivelman, E., Caygill, K.A., Grady, D., Schactman, M., Shapiro, C.L. (2010). A phase 1B dose escalation trial of Scutellaria barbata (BZL101) for patients with metastatic breast cancer. Breast Cancer Res. Treat., 120, 111–118. http://dx.doi.org/10.1007/s10549-009-0678-5
  38. Pitekelabou, R., Aïdam, A.V., Kokou, K. (2015). Influence of various carbohydrates on the in vitro micropropagation of Nauclea diderrichii (De Wild &T. Durand) Merrill, an endangered forest species in Togo. Afr. J. Biotechnol., 14(15), 1283–1289. https://doi.org/10.5897/AJB2015.14412
  39. Preethi, D., Sridhar, T.M., Naidu, C.V. (2011). Carbohydrate Concentration Influences in vitro Plant Regeneration in Stevia rebaudiana. J. Phytol., 3(5), 61–64.
  40. Rahman, M.H., Islam, R., Hossain, M., Islam, M.S. (2010). Role of sucrose, glucose and maltose on conventional potato micropropagation. Int. J. Agric. Technol., 6(4), 733–739.
  41. Roychoudhry, S., Kepinski, S. (2022). Auxin in root development. Cold Spring Harb. Perspect. Biol., 14(4), a039933. https://doi.org/10.1101/cshperspect.a039933
  42. Shani, E., Weinstain, R., Zhang, Y., Castillejo, C., Kaiserli, E., Chory, J., Tsien, R.Y., Estelle, M. (2013). Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. Proc. Natl. Acad. Sci. U. S. A., 110(12), 4834–4839. https://doi.org/10.1073/pnas.1300436110
  43. Silva, L.A.S., Costa, A., Batista, D., Silva, M., da Silva, M., da Costa Netto, A.P., Rocha, D.I. (2020). Exogenous gibberellin and cytokinin in a novel system for in vitro germination and development of African iris (Dietes bicolor). Revista Ceres., 67(5). https://doi.org/10.1590/0034-737x202067050008
  44. Sridhar, T.M., Naidu, C.V. (2011). Effect of different carbon sources on in vitro shoot regeneration of Solanum nigrum (Linn). An important antiulcer medicinal plant. J. Phytol., 3(2), 78–82.
  45. Sujana, P., Naidu, C.V. (2011). Impact of different carbohydrates on high frequency plant regeneration from axillary buds of Mentha piperita (L.). An important multipurpose medicinal plant. J. Phytol., 3(5), 14–18.
  46. Sumaryono, Muslihatin, W., Ratnadewi, D. (2012). Effect of carbohydrate source on growth and performance of in vitro sago palm (Metroxylon sagu Rottb.) plantlets. HAYATI J. Biosci., 19(2), 88–92. https://doi.org/10.4308/hjb.19.2.88
  47. Sun, J., Cao, Y., Liu, Q., Zhou, Z., Xu, Y., Liu, C. (2024). Chemical constituents, anti-tumor mechanisms, and clinical application. A comprehensive review on Scutellaria barbata. Molecules, 29, 4134. https://doi.org/10.3390/molecules29174134
  48. Tarinejad, A., Amiri, S. (2019). Influence of plant growth regulators, carbohydrate source and concentration on micropropagation and other physiological traits of grape (Vitis vinifera L. cv. Shahroudi) under in vitro conditions. J. Plant. Physiol. Breed., 9(1), 75–82. http://dx.doi.org/10.22034/jppb.2019.10378
  49. Teszlák, P., Kocsis, M., Gaál, K., Nikfardjam, M.P. (2013). Regulatory effects of exogenous gibberellic acid (GA3) on water relations and CO2 assimilation among grapevine (Vitis vinifera L.) cultivars. Sci. Hortic., 159, 41–51. https://doi.org/10.1016/j.scienta.2013.04.037
  50. Van den Ende, W. (2014). Sugars take a central position in plant growth, development and stress responses. A focus on apical dominance. Front. Plant Sci., 5, 313. https://doi.org/10.3389/fpls.2014.00313
  51. Wang, L., Chen, W., Li, M., Zhang, F., Chen, K., Chen, W. (2020). A review of the ethnopharmacology, phytochemistry, pharmacology, and quality control of Scutellaria barbata D. Don. J. Ethnopharmacol., 254, 112260. https://doi.org/10.1016/j.jep.2019.112260
  52. Wang, T.S., Wang, S.Q., Xiao, D.L. (2012). A review of phytochemistry and antitumor activity of a valuable medicinal species: Scutellaria barbata. J. Med. Plant Res., 6(26), 4259–4275. https://doi.org/10.5897/JMPR012.295
  53. Yaseen, M., Ahmad, T., Sablok, G., Standardi, A., Hafiz, I.A. (2013). Review: role of carbon sources for in vitro plant growth and development. Mol. Biol. Rep., 40, 2837–2849. https://doi.org/10.1007/s11033-012-2299-z

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.