Skip to main navigation menu Skip to main content Skip to site footer

ONLINE FIRST

Articles

Effects of nitrogen dose and N-NH4:Ntotal ratio on growth, yield, and quality of greenhouse lettuce across seasons

DOI: https://doi.org/10.24326/asphc.2025.5518
Submitted: 21 March 2025
Published: 28.10.2025

Abstract

A factorial experiment testing the effects of different nitrogen dose applications (60, 80, and 120 kg ha–1) provided varying ratios of N-NH4 to the total amount of nitrogen supplied (0.4, 1.0) was conducted in two successive growing seasons (autumn-winter and spring) with the Lactuca sativa Lagarde F1. Phosphorus and potassium fertilizers were kept constant and uniform at all experimental plots, respectively 25 (P2O5) and 180 (K2O) kg ha–1. Root traits, growth parameters, yield, nitrogen use efficiency (NUE), and NO3 concentration in the lettuce leaves were measured and analyzed. N-NO3 concentration and NUE were the most sensitive traits to N dose applications and N-NH4:Ntotal ratio. The remaining traits, yield included, rather than on the N dose and its application forms, were subject to seasonal variation of environmental factors. A range of 60‒ 80 kg ha–1 N was the optimum for greenhouse lettuce fertilization. Further increase of N dose applications did not provide a higher yield, whereas it significantly increased the N-NO3 concentration in the plant and reduced the N use efficiency. The NO3 concentration in the lettuce leaves was reduced by increasing the ratio of N-NH4 to total N applied and extending the period of the latest N application before harvesting.

References

  1. Albornoz, F., Lieth, J.H. (2015). Over fertilization limits lettuce productivity because of osmotic stress. Chilean J. Agric. Res.,75(3). https://doi.org/10.4067/S0718-58392015000400003
  2. Babaj, I., Sahiti, Z., Kaciu, S., Sallaku, G., Balliu, A. (2021). N concentration of nutrient solution affects root morphology and growth parameters of pepper seedlings. Acta Hortic., 1320, 343–348. https://doi.org/10.17660/ActaHortic.2021.1320.45
  3. Balliu, A., Bani, A., Karajani, M., Sulçe, S. (2007a). Environmental impacts of nitrogen concentration of tomato and pepper seedling’s nutrient solution. Acta Hortic., 747, 495‒502. https://doi.org/10.17660/ActaHortic.2007.747.63
  4. Balliu, A., Sallaku, G. (2021). The environment temperature affects post-germination growth and root system architecture of pea (Pisum sativum L.) plants. Sci. Hortic. (Amsterdam), 278, 109858. https://doi.org/10.1016/j.scienta.2020.109858
  5. Balliu, A., Sallaku, G., Kuçi, S. (2008). Nitrogen concentration in nutrient solution and module volume effects on the growth characters and yield potentials of eggplant seedlings. Acta Hortic., 801, 1373–1378. https://doi.org/10.17660/ActaHortic.2008.801.168
  6. Balliu, A., Sallaku, G., Kuçi, S., Çota, E., Kaçiu, S. (2007b). The effect of major nutrients (NPK) on the growth rate of pepper and eggplant seedlings. Acta Hortic., 729, 341–347. https://doi.org/10.17660/actahortic.2007.729.56
  7. Balliu, A., Vuksani, G., Abazi, U., Haxhinasto, L., Nasto, T. (2009). The influence of N concentration in pre transplant nutrient solution on the N use efficiency and dry mass partitioning of pepper (Capsicum annum L.) seedlings. Acta Hortic., 807, 579–584.
  8. Bergmann, J., Weigelt, A., Van Der Plas, F., Laughlin, D.C., Kuyper, T.W., Guerrero-Ramirez, N., Valverde-Barrantes, O.J., Bruelheide, H., Fresche, G.T., Iversen, C.M., Kattge, J., McCormack, M.L., Meier, I.C., Rillig, M.C., Roumet, C., Semchenko, M., Sweeney, C.J., Van Ruijven, J., York, L.M., Mommer, L. (2020). The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv., 6, 1–10. https://doi.org/10.1126/sciadv.aba3756
  9. Bian, Z., Wang, Y., Zhang, X., Li, T., Grundy, S., Yang, Q., Chen, R. (2020). A review of environment effects on nitrate accumulation in leafy vegetables grown in controlled environments. Foods, 9(6), 732. https://doi.org/10.3390/foods9060732
  10. Bian, Z.H., Yang, Q.C., Liu, W.K. (2015). Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. J. Sci. Food Agric., 95, 869–877. https://doi.org/10.1002/jsfa.6789
  11. Blekkenhorst, L.C., Prince, R.L., Ward, N.C., Croft, K.D., Lewis, J.R., Devine, A., Shinde, S., Woodman, R.J., Hodgson, J.M., Bondonno, C.P. (2017). Development of a reference database for assessing dietary nitrate in vegetables. Mol. Nutr. Food Res., 61(8), 1600982. https://doi.org/10.1002/mnfr.201600982
  12. Borgognone, D., Rouphael, Y., Cardarelli, M., Lucini, L., Colla, G. (2016). Changes in biomass, mineral composition, and quality of cardoon in response to NO3–:Cl− ratio and nitrate deprivation from the nutrient solution. Front. Plant Sci., 7, 1–9. https://doi.org/10.3389/fpls.2016.00978
  13. Burns, I.G., Zhang, K., Turner, M.K., Edmondson, R. (2011). Iso-osmotic regulation of nitrate accumulation in lettuce. J. Plant Nutr., 34, 283–313. https://doi.org/10.1080/01904167.2011.533328
  14. Castaings, L., Marchive, C., Meyer, C., Krapp, A. (2011). Nitrogen signalling in Arabidopsis: how to obtain insights into a complex signalling network. J. Exp. Bot., 62, 1391–1397. https://doi.org/10.1093/jxb/erq375
  15. Cataldo, D.A., Haroon, M.H., Schrader, L.E., Youngs, V.L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal., 6, 71–80. https://doi.org/10.1080/00103627509366547
  16. Chen, X.-L, Guo, W.-Z., Xue, X.-Z., Wang, L.-C., Qiao, X.-J. (2014). Growth and quality responses of “Green Oak Leaf” lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Sci. Hortic. (Amsterdam), 172, 168–175. https://doi.org/10.1016/j.scienta.2014.04.009
  17. Cometti, N.N., Martins, M.Q., Bremenkamp, C.A., Nunes, J.A. (2011). Nitrate concentration in lettuce leaves depending on photosynthetic photon flux and nitrate concentration in the nutrient solution. Hortic. Bras., 29, 548–553. https://doi.org/10.1590/s0102-05362011000400018
  18. De Pinheiro Henriques, A.R., Marcelis, L.F.M. (2000). Regulation of growth at steady-state nitrogen nutrition in lettuce (Lactuca sativa L.): interactive effects of nitrogen and irradiance. Ann. Bot., 86, 1073–1080. https://doi.org/10.1006/anbo.2000.1268
  19. Du, S.-T., Zhang, Y.-S., Lin, X.-Y. (2007). Accumulation of nitrate in vegetables and its possible implications to human health. Agric. Sci. China, 6, 1246–1255. https://doi.org/10.1016/S1671-2927(07)60169-2
  20. El-Ghany, M.F.A., El–Kherbawy, M.I., Abdel-Aal, Y.A., Abbas, M.H. (2022). Effect of growth seasons and nitrogen fertilization on the growth, yield and nitrate accumulation of lettuce (Lactuca sativa L.) plants. Int. J. Health Sci. (Qassim), 6, 7053–7066. https://doi.org/10.53730/ijhs.v6ns4.10399
  21. European Commission (2011). Commission Regulation (EU) No 1258/2011 of 2 December 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for nitrates in foodstuffs. Official Journal of the European Union.
  22. Fu, Y., Li, H.Y., Yu, J., Liu, H., Cao, Z.Y., Manukovsky, N.S., Liu, H. (2017). Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce (Lactuca sativa L. var. youmaicai). Sci. Hortic. (Amsterdam), 214, 51–57. https://doi.org/10.1016/j.scienta.2016.11.020
  23. Guo, S., Brück, H., Sattelmacher, B. (2002). Effects of supplied nitrogen form on growth and water uptake of French bean (Phaseolus vulgaris L.) plants: nitrogen form and water uptake. Plant Soil, 239, 267–275. https://doi.org/10.1023/A:1015014417018
  24. Hachiya, T., Sakakibara, H. (2017). Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. J. Exp. Bot., 68, 2501–2512. https://doi.org/10.1093/jxb/erw449
  25. Kiba, T., Krapp, A. (2016). Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant Cell Physiol., 57, 707–714. https://doi.org/10.1093/pcp/pcw052
  26. Konstantopoulou, E., Kapotis, G., Salachas, G., Petropoulos, S.A., Karapanos, I.C., Passam, H.C. (2010). Nutritional quality of greenhouse lettuce at harvest and after storage in relation to N application and cultivation season. Sci. Hortic. (Amsterdam), 125, 93.e1-93.e5. https://doi.org/10.1016/j.scienta.2010.03.003
  27. Kronzucker, H.J., Glass, A.D.M., Siddiqi, M.Y. (1999). Inhibition of nitrate uptake by ammonium in barley. Analysis of component fluxes. Plant Physiol., 120, 283–291. https://doi.org/10.1104/pp.120.1.283
  28. Lillo, C., Appenroth, K.J. (2001). Light regulation of nitrate reductase in higher plants: which photoreceptors are involved? Plant Biol., 3, 455–465. https://doi.org/10.1055/s-2001-17732
  29. Lima, J.E., Kojima, S., Takahashi, H., von Wirén, N. (2010). Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1;3-dependent manner. Plant Cell, 22, 3621–3633. https://doi.org/10.1105/tpc.110.076216
  30. Liu, H., Fu, Y., Yu, J., Liu, H. (2016). Accumulation and Primary Metabolism of Nitrate in Lettuce (Lactuca sativa L. var. Youmaicai) grown under three different light sources. Commun. Soil Sci. Plant Anal., 47, 1994–2002. https://doi.org/10.1080/00103624.2016.1225076
  31. Ma, Z., Guo, D., Xu, X., Lu, M., Bardgett, R.D., Eissenstat, D.M., McCormack, M.L., Hedin, L.O. (2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94–97. https://doi.org/10.1038/nature25783
  32. Martínez-Moreno, A., Carmona, J., Martínez, V., Garcia-Sánchez, F., Mestre, T.C., Navarro-Pérez, V., Cámara-Zapata, J.M. (2024). Reducing nitrate accumulation through the management of nutrient solution in a floating system lettuce (Lactuca sativa L.). Sci. Hortic. (Amsterdam), 336, 113377. https://doi.org/10.1016/j.scienta.2024.113377
  33. Ortega-Blu, R., Martínez-Salgado, M.M., Ospina, P., García-Díaz, A.M., Fincheira, P. (2020). Nitrate concentration in leafy vegetables from the central zone of chile: sources and environmental factors. J. Soil Sci. Plant Nutr., 20, 964–972. https://doi.org/10.1007/s42729-020-00183-4
  34. R՚him, T., Romdhane, L., Nicoletto, C., Tlili, I., Ilahy, R., Ghannem, S. (2022). Changes in morphological and physiological parameters affecting lettuce cultivars due to nitrogen fertilizer in greenhouse tunnel. J. Postharvest. Technol., 10(1), 19-34.
  35. Ryser, P. (1996). The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses. Funct. Ecol., 10, 717. https://doi.org/10.2307/2390506
  36. Saah, K.J.A., Kaba, J.S., Abunyewa, A.A. (2022). Inorganic nitrogen fertilizer, biochar particle size and rate of application on lettuce (Lactuca sativa L.) nitrogen use and yield. All Life, 15, 624–635. https://doi.org/10.1080/26895293.2022.2080282
  37. Sallaku, G., Rewald, B., Sandén, H., Balliu, A. (2022). Scions impact biomass allocation and root enzymatic activity of rootstocks in grafted melon and watermelon plants. Front. Plant Sci., 13, 1–16. https://doi.org/10.3389/fpls.2022.949086
  38. Santamaria, P. (2006). Nitrate in vegetables: toxicity, content, intake and EC regulation. J. Sci. Food Agric., 86, 10–17. https://doi.org/10.1002/jsfa.2351
  39. Santamaria, P., Gonnella, M., Elia, A., Parente, A., Serio, F. (2001). Ways of reducing rocket salad nitrate content. Acta Hortic., 548, 529–536. https://doi.org/10.17660/ActaHortic.2001.548.64
  40. Savvas, D., Passam, H.C., Olympios, C., Nasi, E., Moustaka, E., Mantzos, N., Barouchas, P. (2006). Effects of ammonium nitrogen on lettuce grown on pumice in a closed hydroponic system. HortScience, 41, 1667–1673. https://doi.org/10.21273/hortsci.41.7.1667
  41. Shi, M., Gu, J., Wu, H., Rauf, A., Emran, T. Bin, Khan, Z., Mitra, S., Aljohani, A.S.M., Alhumaydhi, F.A., Al-awthan, Y.S., Bahattab, O. (2022). Health benefits in lettuce ‒ a comprehensive review. Antioxidants, 11(6), 1158. https://doi.org/10.3390/antiox11061158
  42. Tabaglio, V., Boselli, R., Fiorini, A., Ganimede, C., Beccari, P., Santelli, S., Nervo, G. (2020). Reducing nitrate accumulation and fertilizer use in lettuce with modified intermittent Nutrient Film Technique (NFT) system. Agronomy 10(8), 1208. https://doi.org/10.3390/agronomy10081208. https://doi.org/10.3390/agronomy10081208
  43. Urlić, B., Dumičić, G., Romić, M., Ban, S.G. (2017a). The effect of N and NaCl on growth, yield, and nitrate content of salad rocket (Eruca sativa Mill.). J. Plant Nutr., 40, 2611–2618. https://doi.org/10.1080/01904167.2017.1381122
  44. Urlić, B., Jukić Špika, M., Becker, C., Kläring, H.P., Krumbein, A., Goreta Ban, S., Schwarz, D. (2017b). Effect of NO3 and NH4 concentrations in nutrient solution on yield and nitrate concentration in seasonally grown leaf lettuce. Acta Agric. Scand. Sect. B Soil Plant Sci., 67, 748–757. https://doi.org/10.1080/09064710.2017.1347704
  45. Waddell, H.A., Simpson, R.J., Ryan, M.H., Lambers, H., Garden, D.L., Richardson, A.E. (2017). Root morphology and its contribution to a large root system for phosphorus uptake by Rytidosperma species (wallaby grass). Plant Soil, 412, 7–19. https://doi.org/10.1007/s11104-016-2933-y
  46. Wang, B., Shen, Q., 2011. NH4+-N/NO3‒-N ratios on growth and NO3‒-N remobilization in root vacuoles and cytoplasm of lettuce genotypes. Can. J. Plant Sci., 91, 411–417. https://doi.org/10.4141/CJPS10044
  47. Williams, A., Langridge, H., Straathof, A.L., Muhamadali, H., Hollywood, K.A., Goodacre, R., de Vries, F.T., 2022. Root functional traits explain root exudation rate and composition across a range of grassland species. J. Ecol., 110, 21–33. https://doi.org/10.1111/1365-2745.13630
  48. Zhao, L., Wang, Y., 2017. Nitrate assay for plant tissues. Bio-Protocol, 7, 3–7. https://doi.org/10.21769/bioprotoc.2029
  49. Zhu, Y., Qi, B., Hao, Y., Liu, H., Sun, G., Chen, R., Song, S., 2021. Appropriate NH4+/NO3– ratio triggers plant growth and nutrient uptake of flowering chinese cabbage by optimizing the ph value of nutrient solution. Front. Plant Sci., 12, 1–16. https://doi.org/10.3389/fpls.2021.656144

Downloads

Download data is not yet available.

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.