Skip to main navigation menu Skip to main content Skip to site footer

Vol. 24 No. 6 (2025)

Articles

Dual role of hydrogen sulfide in modulating photosynthesis, antioxidant defense, and membrane integrity in Cucurbita pepo

DOI: https://doi.org/10.24326/asphc.2025.5541
Submitted: 2 May 2025
Published: 30.12.2025

Abstract

Although traditionally regarded as a toxic environmental gas, hydrogen sulfide (H2S) has recently been recognized as a gasotransmitter involved in regulating various physiological processes in both plants and animals. This study aimed to investigate the stage- and concentration-dependent effects of exogenous H2S on the growth, photosynthetic capacity, and antioxidant performance of squash (Cucurbita pepo) plants. Fifteen-day-old seedlings were subjected to foliar application of H2S at different concentrations (0, 25, 50, 75, 100, 200, and 300 μM) and monitored until the end of the experiment. Plant samples were collected at two distinct intervals following H2S treatment – 24 hours and 15 days to comprehensively assess growth, physiological, and biochemical parameters. The results revealed a biphasic response to H2S treatments. Application of 100 μM H2S significantly improved growth traits (including shoot and root length, dry biomass, and leaf area), photosynthetic performance, carbonic anhydrase activity, antioxidant enzyme activities, and proline accumulation, while reducing electrolyte leakage and lipid peroxidation compared to untreated controls. In contrast, higher concentrations (200 and 300 μM) adversely affected these parameters and caused increased cellular damage. These findings suggest that 100 μM H2S is the optimal concentration for enhancing physiological and biochemical traits in squash and may serve as a promising tool for improving crop productivity via improved photosynthetic and stress-response mechanisms.

References

  1. Aebi, H. (1984). Catalase in vitro. Methods Enzymol., 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3
  2. Alamer, K.H. (2023). Exogenous hydrogen sulfide supplementation alleviates the salinity-stress-mediated growth decline in wheat (Triticum aestivum L.) by modulating tolerance mechanisms. Plants, 12(19), 3464. https://doi.org/10.3390/plants12193464
  3. Alvarez, C., Calo, L., Romero, L.C., García, I., Gotor, C. (2010). An O-acetylserine(thiol)lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiol., 152, 656–669. https://doi.org/10.1104/pp.109.147975
  4. Arif, Y., Hayat, S., Yusuf, M., Bajguz, A. (2021). Hydrogen sulfide. A versatile gaseous molecule in plants. Plant Physiol. Biochem., 158, 372–384. https://doi.org/10.1016/j.plaphy.2020.11.045
  5. Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol., 24(1), 1–15. https://doi.org/10.1104/pp.24.1.1
  6. Aroca, A., Gotor, C., Romero, L.C. (2018). Hydrogen sulfide signaling in plants. Emerging roles of protein persulfidation. Front. Plant Sci., 9, 1369. https://doi.org/10.3389/fpls.2018.01369
  7. Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205–207. https://doi.org/10.1007/BF00018060
  8. Chen, J., Wu, F.-H., Wang, W.-H., Zheng, C.-J., Lin, G.-H., Dong, X.-J., He, J.-X., Pei, Z.-M., Zheng H.-L. (2011). Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. J. Exp. Bot., 62(13), 4481–4493. https://doi.org/10.1093/jxb/err145
  9. Christou, A., Filippou, P., Manganaris, G.A., Fotopoulos, V. (2014). Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biol., 14, 42. https://doi.org/10.1186/1471-2229-14-42
  10. Corpas, F.J., Barroso, J.B., González-Gordo, S., Muñoz-Vargas, M.A., Palma, J.M. (2019). Hydrogen sulfide: a novel component in Arabidopsis peroxisomes which triggers catalase inhibition. J. Integr. Plant Biol., 61(7), 871–883. https://doi.org/10.1111/jipb.12779
  11. Corpas, F.J., Palma, J.M. (2020). H2S signaling in plants and applications in agriculture. J. Adv. Res., 24, 131–137. https://doi.org/10.1016/j.jare.2020.03.011
  12. Daneshvand, E., Rahmani, F., Abbaspour, N., Rahimi, A. (2024). Hydrogen sulfide’s role in enhancing antioxidant defense and biochemical resilience in salt-stressed lavender (Lavandula angustifolia) plants. Russ. J. Plant Physiol., 72(15). https://doi.org/10.1134/S1021443724609248
  13. Du, X., Jin, Z., Liu, Z., Liu, D., Zhang, L., Ma, X., Tang, G., Liu, S., Guo, Y., Pei, Y. (2021). H₂S persulfidated and increased kinase activity of MPK4 to response cold stress in Arabidopsis. Front. Mol. Biosci., 8, 635470. https://doi.org/10.3389/fmolb.2021.635470
  14. Dwivedi, R.S., Randhawa, N.S. (1974). Evolution of a rapid test for the hidden hunger of zinc in plants. Plant Soil, 40, 445–451. https://doi.org/10.1007/BF00011531
  15. Guo, L., Ling, L., Wang, X., Cheng, T., Wang, H., Ruan, Y. (2023). Exogenous hydrogen sulfide and methylglyoxal alleviate cadmium-induced oxidative stress in Salix matsudana Koidz by regulating glutathione metabolism. BMC Plant Biol., 23(1), 73. https://doi.org/10.1186/s12870-023-04089-y
  16. Hancock, J.T., Whiteman, M. (2016). Hydrogen sulfide signaling. Interactions with nitric oxide and reactive oxygen species. Ann. N.Y. Acad. Sci., 1365(1), 5–14. https://doi.org/10.1111/nyas.12733
  17. Hao, X., Jin, Z., Wang, Z., Qin, W., Pei, Y. (2020). Hydrogen sulfide mediates DNA methylation to enhance osmotic stress tolerance in Setaria italica L. Plant Soil, 453, 355–370.
  18. Hodges, D.M., DeLong, J.M., Forney, C.F., Prange, R.K. (1999). Improving the thiobarbituric acid reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604–611. https://doi.org/10.1007/s004250050524
  19. Huang, D., Huo, J., Liao, W. (2021). Hydrogen sulfide. Roles in plant abiotic stress response and crosstalk with other signals. Plant Sci., 302, 110733. https://doi.org/10.1016/j.plantsci.2020.110733
  20. Huang, J., Xie, Y. (2023). Hydrogen sulfide signaling in plants. Antiox. Redox Signal., 39(1–3), 40–58. https://doi.org/10.1089/ars.2023.0267
  21. Jurado-Flores, A., Aroca, A., Romero, L.C., Gotor, C. (2023). Sulfide promotes tolerance to drought through protein persulfidation in Arabidopsis. J. Exp. Bot., 74(15), 4654–4669. https://doi.org/10.1093/jxb/erad165
  22. Khan, M.N., Mobin, M., Abbas, Z.K., Siddiqui, M.H. (2017). Nitric oxide-induced synthesis of hydrogen sulfide alleviates osmotic stress in wheat seedlings through sustaining antioxidant enzymes, osmolyte accumulation and cysteine homeostasis. Nitric Oxide, 68, 91–102. https://doi.org/10.1016/j.niox.2017.01.001
  23. Kimura, H. (2014). The physiological role of hydrogen sulfide and beyond. Nitric Oxide, 41, 4–10. https://doi.org/10.1016/j.niox.2014.01.002
  24. Li, Z.-G., Ding, X.-J., Du, P.-F. (2013). Hydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of proline. J. Plant Physiol., 170(8), 741–747. https://doi.org/10.1016/j.jplph.2012.12.018
  25. Li, Z.-G., Min, X., Zhou, Z.-H. (2016). Hydrogen sulfide. A signal molecule in plant cross-adaptation. Front. Plant Sci., 7, 1621. https://doi.org/10.3389/fpls.2016.01621
  26. Lisjak, M., Teklic, T., Wilson, I.D., Wood, M., Whiteman, M., Hancock, J.T. (2011). Hydrogen sulfide effects on stomatal apertures. Plant Signal Behav., 6(10), 1444– 1446. https://doi.org/10.4161/psb.6.10.17104
  27. Liu, J., Hou, Z.-H., Liu, G.-H., Hou, L.-X, Liu, X. (2012). Hydrogen sulfide may function downstream of nitric oxide in ethylene-induced stomatal closure in Vicia faba L. J. Integr. Agric., 11(10), 1644–1653. https://doi.org/10.1016/S2095-3119(12)60167-1
  28. Liu, Z., Cao, C., Li, Y., Yang, G., Pei, Y. (2019). Light regulates hydrogen sulfide signalling during skoto- and photo-morphogenesis in foxtail millet. Funct. Plant Biol., 46(10), 916–924. https://doi.org/10.1071/fp19079
  29. Mingjian, Z., Zhang, K., Xie, Y. (2025). Revealing how plants utilize H2S to relay drought stress signals. Trends Plant Sci., 30(1), 13–16. https://doi.org/10.1016/j.tplants.2024.09.002
  30. Mostofa, M.G., Daisuke, S., Masayuki, F., Lam-Son Phan, T. (2015). Hydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stress. Front. Plant Sci., 6, 1055. https://doi.org/10.3389/fpls.2015.01055
  31. Sánchez, M., Revilla, G., Zarra, I. (1995). Changes in peroxidase activity associated with cell walls during pine hypocotyl growth. Ann. Bot., 75(4), 415–419. https://doi.org/10.1006/anbo.1995.1039
  32. Scuffi, D., Álvarez, C., Laspina, N., Gotor, C., Lamattina, L., García-Mata, C. (2014). Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate ABA-dependent stomatal closure. Plant Physiol., 166(4), 2065–2076. https://doi.org/10.1104/pp.114.245373
  33. Sullivan, C.Y. and Ross, W.M. (1979) Selecting for Drought and Heat Resistance in Grain Sorghum. In: Mussell, H. and Staples, R.C., Eds., Stress Physiology in Crop Plants, John Wiley and Sons, New York, 263–281.
  34. Vandiver, M., Snyder, S.H. (2012). Hydrogen sulfide: a gasotransmitter of clinical relevance. J. Mol. Med. (Berl.), 90(3), 255–263. https://doi.org/10.1007/s00109-012-0873-4
  35. Wang L, Mu X, Chen X, Han Y. (2022). Hydrogen sulfide attenuates intracellular oxidative stress via repressing glycolate oxidase activities in Arabidopsis thaliana. BMC Plant Biol. 22, 98. https://doi.org/10.1186/s12870-022-03490-3
  36. Xie, Y., Zhang, C., Lai, D., Sun, Y., Samma, M.K., Zhang, J., Shen, W. (2014). Hydrogen sulfide delays GA-triggered programmed cell death in wheat aleurone layers by the modulation of glutathione homeostasis and heme oxygenase-1 expression. J. Plant Physiol., 171(2), 53– 62. https://doi.org/10.1016/j.jplph.2013.09.018
  37. Ye, X.-Y., Qiu, X.-M., Sun, Y.-Y., Li, Z.-G. (2020). Interplay between hydrogen sulfide and methylglyoxal initiates thermotolerance in maize seedlings by modulating reactive oxidative species and osmolyte metabolism. Protoplasma, 257(5), 1415–1432. https://doi.org/10.1007/s00709-020-01516-x
  38. Zhang, H., Jiao, H., Jiang, C.-X., Wang, S.-H., Wei, Z.-J., Luo, J.-P., Jones, R.L. (2010). Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress. Acta Physiol. Plant., 32(5), 849–857. https://doi.org/10.1007/s11738-010-0469-y
  39. Zhang, P., Luo, Q., Wang, R., Xu, J. (2017). Hydrogen sulfide toxicity inhibits primary root growth through the ROS-NO pathway. Sci. Rep., 7, 868. https://doi.org/10.1038/s41598-017-01046-2
  40. Zhou, M., Zhou, H., Shen, J., Zhang, Z., Gotor, C., Romero L.C., Yuan, X., Xie, Y. (2021). H2S action in plant life cycle. Plant Growth Regul. 94(11), 1–9. https://doi.org/10.1007/s10725-021-00693-w
  41. Zhang, J., Corpas, F.J., Li, J., Xie, Y. (2022). hydrogen sulfide and reactive oxygen species, antioxidant defense, abiotic stress tolerance mechanisms in plants. Int. J. Mol. Sci. 23(16), 9463. https://doi.org/10.3390/ijms23169463

Downloads

Download data is not yet available.

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.