Abstract
Although traditionally regarded as a toxic environmental gas, hydrogen sulfide (H2S) has recently been recognized as a gasotransmitter involved in regulating various physiological processes in both plants and animals. This study aimed to investigate the stage- and concentration-dependent effects of exogenous H2S on the growth, photosynthetic capacity, and antioxidant performance of squash (Cucurbita pepo) plants. Fifteen-day-old seedlings were subjected to foliar application of H2S at different concentrations (0, 25, 50, 75, 100, 200, and 300 μM) and monitored until the end of the experiment. Plant samples were collected at two distinct intervals following H2S treatment – 24 hours and 15 days to comprehensively assess growth, physiological, and biochemical parameters. The results revealed a biphasic response to H2S treatments. Application of 100 μM H2S significantly improved growth traits (including shoot and root length, dry biomass, and leaf area), photosynthetic performance, carbonic anhydrase activity, antioxidant enzyme activities, and proline accumulation, while reducing electrolyte leakage and lipid peroxidation compared to untreated controls. In contrast, higher concentrations (200 and 300 μM) adversely affected these parameters and caused increased cellular damage. These findings suggest that 100 μM H2S is the optimal concentration for enhancing physiological and biochemical traits in squash and may serve as a promising tool for improving crop productivity via improved photosynthetic and stress-response mechanisms.
References
- Aebi, H. (1984). Catalase in vitro. Methods Enzymol., 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3
- Alamer, K.H. (2023). Exogenous hydrogen sulfide supplementation alleviates the salinity-stress-mediated growth decline in wheat (Triticum aestivum L.) by modulating tolerance mechanisms. Plants, 12(19), 3464. https://doi.org/10.3390/plants12193464
- Alvarez, C., Calo, L., Romero, L.C., García, I., Gotor, C. (2010). An O-acetylserine(thiol)lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiol., 152, 656–669. https://doi.org/10.1104/pp.109.147975
- Arif, Y., Hayat, S., Yusuf, M., Bajguz, A. (2021). Hydrogen sulfide. A versatile gaseous molecule in plants. Plant Physiol. Biochem., 158, 372–384. https://doi.org/10.1016/j.plaphy.2020.11.045
- Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol., 24(1), 1–15. https://doi.org/10.1104/pp.24.1.1
- Aroca, A., Gotor, C., Romero, L.C. (2018). Hydrogen sulfide signaling in plants. Emerging roles of protein persulfidation. Front. Plant Sci., 9, 1369. https://doi.org/10.3389/fpls.2018.01369
- Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205–207. https://doi.org/10.1007/BF00018060
- Chen, J., Wu, F.-H., Wang, W.-H., Zheng, C.-J., Lin, G.-H., Dong, X.-J., He, J.-X., Pei, Z.-M., Zheng H.-L. (2011). Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. J. Exp. Bot., 62(13), 4481–4493. https://doi.org/10.1093/jxb/err145
- Christou, A., Filippou, P., Manganaris, G.A., Fotopoulos, V. (2014). Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biol., 14, 42. https://doi.org/10.1186/1471-2229-14-42
- Corpas, F.J., Barroso, J.B., González-Gordo, S., Muñoz-Vargas, M.A., Palma, J.M. (2019). Hydrogen sulfide: a novel component in Arabidopsis peroxisomes which triggers catalase inhibition. J. Integr. Plant Biol., 61(7), 871–883. https://doi.org/10.1111/jipb.12779
- Corpas, F.J., Palma, J.M. (2020). H2S signaling in plants and applications in agriculture. J. Adv. Res., 24, 131–137. https://doi.org/10.1016/j.jare.2020.03.011
- Daneshvand, E., Rahmani, F., Abbaspour, N., Rahimi, A. (2024). Hydrogen sulfide’s role in enhancing antioxidant defense and biochemical resilience in salt-stressed lavender (Lavandula angustifolia) plants. Russ. J. Plant Physiol., 72(15). https://doi.org/10.1134/S1021443724609248
- Du, X., Jin, Z., Liu, Z., Liu, D., Zhang, L., Ma, X., Tang, G., Liu, S., Guo, Y., Pei, Y. (2021). H₂S persulfidated and increased kinase activity of MPK4 to response cold stress in Arabidopsis. Front. Mol. Biosci., 8, 635470. https://doi.org/10.3389/fmolb.2021.635470
- Dwivedi, R.S., Randhawa, N.S. (1974). Evolution of a rapid test for the hidden hunger of zinc in plants. Plant Soil, 40, 445–451. https://doi.org/10.1007/BF00011531
- Guo, L., Ling, L., Wang, X., Cheng, T., Wang, H., Ruan, Y. (2023). Exogenous hydrogen sulfide and methylglyoxal alleviate cadmium-induced oxidative stress in Salix matsudana Koidz by regulating glutathione metabolism. BMC Plant Biol., 23(1), 73. https://doi.org/10.1186/s12870-023-04089-y
- Hancock, J.T., Whiteman, M. (2016). Hydrogen sulfide signaling. Interactions with nitric oxide and reactive oxygen species. Ann. N.Y. Acad. Sci., 1365(1), 5–14. https://doi.org/10.1111/nyas.12733
- Hao, X., Jin, Z., Wang, Z., Qin, W., Pei, Y. (2020). Hydrogen sulfide mediates DNA methylation to enhance osmotic stress tolerance in Setaria italica L. Plant Soil, 453, 355–370.
- Hodges, D.M., DeLong, J.M., Forney, C.F., Prange, R.K. (1999). Improving the thiobarbituric acid reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604–611. https://doi.org/10.1007/s004250050524
- Huang, D., Huo, J., Liao, W. (2021). Hydrogen sulfide. Roles in plant abiotic stress response and crosstalk with other signals. Plant Sci., 302, 110733. https://doi.org/10.1016/j.plantsci.2020.110733
- Huang, J., Xie, Y. (2023). Hydrogen sulfide signaling in plants. Antiox. Redox Signal., 39(1–3), 40–58. https://doi.org/10.1089/ars.2023.0267
- Jurado-Flores, A., Aroca, A., Romero, L.C., Gotor, C. (2023). Sulfide promotes tolerance to drought through protein persulfidation in Arabidopsis. J. Exp. Bot., 74(15), 4654–4669. https://doi.org/10.1093/jxb/erad165
- Khan, M.N., Mobin, M., Abbas, Z.K., Siddiqui, M.H. (2017). Nitric oxide-induced synthesis of hydrogen sulfide alleviates osmotic stress in wheat seedlings through sustaining antioxidant enzymes, osmolyte accumulation and cysteine homeostasis. Nitric Oxide, 68, 91–102. https://doi.org/10.1016/j.niox.2017.01.001
- Kimura, H. (2014). The physiological role of hydrogen sulfide and beyond. Nitric Oxide, 41, 4–10. https://doi.org/10.1016/j.niox.2014.01.002
- Li, Z.-G., Ding, X.-J., Du, P.-F. (2013). Hydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of proline. J. Plant Physiol., 170(8), 741–747. https://doi.org/10.1016/j.jplph.2012.12.018
- Li, Z.-G., Min, X., Zhou, Z.-H. (2016). Hydrogen sulfide. A signal molecule in plant cross-adaptation. Front. Plant Sci., 7, 1621. https://doi.org/10.3389/fpls.2016.01621
- Lisjak, M., Teklic, T., Wilson, I.D., Wood, M., Whiteman, M., Hancock, J.T. (2011). Hydrogen sulfide effects on stomatal apertures. Plant Signal Behav., 6(10), 1444– 1446. https://doi.org/10.4161/psb.6.10.17104
- Liu, J., Hou, Z.-H., Liu, G.-H., Hou, L.-X, Liu, X. (2012). Hydrogen sulfide may function downstream of nitric oxide in ethylene-induced stomatal closure in Vicia faba L. J. Integr. Agric., 11(10), 1644–1653. https://doi.org/10.1016/S2095-3119(12)60167-1
- Liu, Z., Cao, C., Li, Y., Yang, G., Pei, Y. (2019). Light regulates hydrogen sulfide signalling during skoto- and photo-morphogenesis in foxtail millet. Funct. Plant Biol., 46(10), 916–924. https://doi.org/10.1071/fp19079
- Mingjian, Z., Zhang, K., Xie, Y. (2025). Revealing how plants utilize H2S to relay drought stress signals. Trends Plant Sci., 30(1), 13–16. https://doi.org/10.1016/j.tplants.2024.09.002
- Mostofa, M.G., Daisuke, S., Masayuki, F., Lam-Son Phan, T. (2015). Hydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stress. Front. Plant Sci., 6, 1055. https://doi.org/10.3389/fpls.2015.01055
- Sánchez, M., Revilla, G., Zarra, I. (1995). Changes in peroxidase activity associated with cell walls during pine hypocotyl growth. Ann. Bot., 75(4), 415–419. https://doi.org/10.1006/anbo.1995.1039
- Scuffi, D., Álvarez, C., Laspina, N., Gotor, C., Lamattina, L., García-Mata, C. (2014). Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate ABA-dependent stomatal closure. Plant Physiol., 166(4), 2065–2076. https://doi.org/10.1104/pp.114.245373
- Sullivan, C.Y. and Ross, W.M. (1979) Selecting for Drought and Heat Resistance in Grain Sorghum. In: Mussell, H. and Staples, R.C., Eds., Stress Physiology in Crop Plants, John Wiley and Sons, New York, 263–281.
- Vandiver, M., Snyder, S.H. (2012). Hydrogen sulfide: a gasotransmitter of clinical relevance. J. Mol. Med. (Berl.), 90(3), 255–263. https://doi.org/10.1007/s00109-012-0873-4
- Wang L, Mu X, Chen X, Han Y. (2022). Hydrogen sulfide attenuates intracellular oxidative stress via repressing glycolate oxidase activities in Arabidopsis thaliana. BMC Plant Biol. 22, 98. https://doi.org/10.1186/s12870-022-03490-3
- Xie, Y., Zhang, C., Lai, D., Sun, Y., Samma, M.K., Zhang, J., Shen, W. (2014). Hydrogen sulfide delays GA-triggered programmed cell death in wheat aleurone layers by the modulation of glutathione homeostasis and heme oxygenase-1 expression. J. Plant Physiol., 171(2), 53– 62. https://doi.org/10.1016/j.jplph.2013.09.018
- Ye, X.-Y., Qiu, X.-M., Sun, Y.-Y., Li, Z.-G. (2020). Interplay between hydrogen sulfide and methylglyoxal initiates thermotolerance in maize seedlings by modulating reactive oxidative species and osmolyte metabolism. Protoplasma, 257(5), 1415–1432. https://doi.org/10.1007/s00709-020-01516-x
- Zhang, H., Jiao, H., Jiang, C.-X., Wang, S.-H., Wei, Z.-J., Luo, J.-P., Jones, R.L. (2010). Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress. Acta Physiol. Plant., 32(5), 849–857. https://doi.org/10.1007/s11738-010-0469-y
- Zhang, P., Luo, Q., Wang, R., Xu, J. (2017). Hydrogen sulfide toxicity inhibits primary root growth through the ROS-NO pathway. Sci. Rep., 7, 868. https://doi.org/10.1038/s41598-017-01046-2
- Zhou, M., Zhou, H., Shen, J., Zhang, Z., Gotor, C., Romero L.C., Yuan, X., Xie, Y. (2021). H2S action in plant life cycle. Plant Growth Regul. 94(11), 1–9. https://doi.org/10.1007/s10725-021-00693-w
- Zhang, J., Corpas, F.J., Li, J., Xie, Y. (2022). hydrogen sulfide and reactive oxygen species, antioxidant defense, abiotic stress tolerance mechanisms in plants. Int. J. Mol. Sci. 23(16), 9463. https://doi.org/10.3390/ijms23169463
Downloads
Download data is not yet available.
-
Sebnem Kusvuran,
H. Yildiz Dasgan,
DROUGHT INDUCED PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES IN Solanum lycopersicum GENOTYPES DIFFERING TO TOLERANCE
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 16 No. 6 (2017)
-
Osama Abd El-Salam Shalaby,
Mirosław Konopiński,
Mansour El-Sayed Ramadan,
EFFECT OF CHELATED IRON AND SILICON ON THE YIELD AND QUALITY OF TOMATO PLANTS GROWN UNDER SEMI-ARID CONDITIONS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 16 No. 6 (2017)
-
Abdollah Ghasemi Pirbalouti,
Fatemeh Malekpoor,
Azam Salimi,
Ahmadreza Golparvar,
Behzad Hamedi,
EFFECTS OF FOLIAR OF THE APPLICATION CHITOSAN AND REDUCED IRRIGATION ON ESSENTIAL OIL YIELD, TOTAL PHENOL CONTENT AND ANTIOXIDANT ACTIVITY OF EXTRACTS FROM GREEN AND PURPLE BASIL
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 16 No. 6 (2017)
-
Arkadiusz Przybysz,
Robert Popek,
Helena Gawrońska,
Katarzyna Grab,
Karolina Łoskot,
Mariola Wrochna,
Stanisław W. Gawroński,
EFFICIENCY OF PHOTOSYNTHETIC APPARATUS OF PLANTS GROWN IN SITES DIFFERING IN LEVEL OF PARTICULATE MATTER
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 13 No. 1 (2014)
-
Małgorzata Mikiciuk,
Renata Dobromilska,
ASSESSMENT OF YIELD AND PHYSIOLOGICAL INDICES OF SMALL-SIZED TOMATO CV. ‘BIANKA F1’ UNDER THE INFLUENCE OF
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 13 No. 1 (2014)
-
Piotr Salachna,
Agnieszka Zawadzińska,
Cezary Podsiadło,
RESPONSE OF Ornithogalum saundersiae BAK. TO SALINITY STRESS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 15 No. 1 (2016)
-
Monika Grzeszczuk,
Anna Stefaniak,
Anna Pachlowska,
BIOLOGICAL VALUE OF VARIOUS EDIBLE FLOWER SPECIES
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 15 No. 2 (2016)
-
Małgorzata Zajączkowska,
Andrzej Pacholczak,
Effect of salinity on the growth and development of ornamental evergreens
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 24 No. 4 (2025)
-
Agnieszka Hanaka,
Sławomir Dresler,
Renata Nurzyńska-Wierdak,
BIOCHEMICAL AND PHYSIOLOGICAL RESPONSES OF Eruca sativa MILL. TO SELECTED NUTRIENT CONDITIONS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 15 No. 4 (2016)
-
Arkadiusz Przybysz,
Helena Gawrońska,
Łukasz Kowalkowski,
Elżbieta Szalacha,
Stanisław W. Gawroński,
THE BIOSTIMULANT ASAHI SL PROTECTS THE GROWTH OF Arabidopsis thaliana L. PLANTS WHEN CADMIUM IS PRESENT
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 15 No. 6 (2016)
<< < 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.