Skip to main navigation menu Skip to main content Skip to site footer

ONLINE FIRST

Articles

Comparison of the course of pathogenesis caused by Verticillium dahliae (Kleb.) and Phytophthora cactorum (Lebert and Cohn) J. Schröt in three strawberry cultivars under in vitro selection

DOI: https://doi.org/10.24326/asphc.2025.5542
Submitted: 7 May 2025
Published: 24.10.2025

Abstract

The strawberries are more or less susceptible to Verticillium dahliae and Phytophthora cactorum, that’s why a constant need to expand knowledge about the mechanisms of resistance to diseases caused by these fungi is requied. In the present study, the course of pathogenesis caused by V. dahliae and P. cactorum in three strawberry cultivars, i.e., Elsanta, Feltar and Teresa, was compared under in vitro selection. The results showed that the extent and rate of development of disease symptoms were mostly insignificantly differentiated on subsequent observation dates. The resemblance observed in Verticillium wilt and phytophthorosis course within each microclone suggested the occurrence of a similar genetic mechanism of resistance response to both fungi. The likeness of average susceptibility to both pathogenic fungi evaluated with McKinney Disease Index (DI%) corresponded with the genetic similarity on the DNA level, which was estimated between selected submicroclones resistant to pathogens within each microclone. The microclone most susceptible to V. dahliae and to P. cactorum was Teresa (DI = 34.02%; 43.53%, respectively), whereas the lowest susceptibility to V. dahliae was observed in Elsanta microclone (DI = 29.85%). The microclone Feltar was considered to be the least susceptible to P. cactorum (DI = 19.50%). Moreover, a strong positive correlation was observed for the extent as well as for the rate between the development of both diseases in each microclone. Heritability in a broad–sense (h2bs) of the extent and rate of development of both pathogeneses reached values above 70%, which revealed the strong genetic determination of the resistance response to both pathogens in the analysed cultivars.

References

  1. Alam, E., Lee, S., Peres, N.A., Whitaker, V.M. (2024b). Marker-assisted pyramiding of charcoal rot resistance loci in strawberry. HortScience, 59(9), 1328–1334. https://doi.org/10.21273/HORTSCI17981-24
  2. Alam, E., Moyer, C., Verma, S., Peres, N.A., Whitaker, V.M. (2024a). Exploring the genetic basis of resistance to Neopestalotiopsis species in strawberry. Plant Gen., 17, e20477. https://doi.org/10.1002/tpg2.20477
  3. Amil-Ruiz, F., Blanco-Portales, R., Muñoz-Blanco, J., Caballero, J.L. (2011). The strawberry plant defense mechanism: a molecular review. Plant Cell Physiol., 52(11), 1873–1903. https://doi.org/10.1093/pcp/pcr136
  4. Antanaviciute, L., Šurbanovski, N., Harrison N., McLeary, K.J., Simpson, D.W., Wilson, F., Sargent, D.J., Harrison, R.J. (2015). Mapping QTL associated with Verticillium dahliae resistance in the cultivated strawberry (Fragaria × ananassa). Hortic. Res., 2, 15009. https://doi.org/10.1038/hortres.2015.9
  5. Bielenin, A. (1999). Strawberry crown rot-a new disease in Polish conditions. Prog. Plant. Prot., 39, 332–335.
  6. Bielenin, A. (2002). Fungi of the genus Phytophthora in fruit crops: occurrence, harmfulness and control. Uniwersytet Przyrodniczy w Poznaniu, Skierniewice, 1–78.
  7. Eikemo, H., Stensvand, A. (2015). Resistance of strawberry genotypes to leather rot and crown rot caused by Phytophthora cactorum. Eur. J. Plant Pathol., 143, 407–413. https://doi.org/10.1007/s10658-015-0685-9
  8. Eikemo, H., Stensvand, A., Davik, J., Tronsmo, A.M. (2003). Resistance to crown rot (Phytophthora cactorum) in straw-berry cultivars and in offspring from crosses between cultivars differing in susceptibility to the disease. Ann. Appl. Biol., 142, 83–89. https://doi.org/10.1111/j.1744-7348.2003.tb00232.x
  9. Ellis, M.A., Wilcox, W.F., Madden, L.V. (1998). Efficacy of metalaxyl, fosetyl aluminum, and straw mulch for control of strawberry leather rot caused by Phytophthora cactorum. Plant Dis., 82(3), 329–332. https://doi.org/10.1094/PDIS.1998.82.3.329
  10. Falconer, D.S., Mackay, T.F.C. (1996). Introduction to quantitative genetics. Longman Scientific and Technical Harlow. UK.
  11. Fang, X.L., Phillips, D., Li, H., Sivasithamparam, K., Barbetti, M.J. (2011). Severity of crown and root diseases of strawberry and associated fungal and oomycete pathogens in Western Australia. Australas. Plant Pathol., 40, 109–119. https://doi.org/10.1007/s13313-010-0019-5
  12. FAOSTAT (2024). The Food and Agriculture Organization of the United Nations. Available at: http://www.fao.org/home/en [date of access: 1.03.2024].
  13. Fradin, E.F., Thomma, B.P. (2006). Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. alboatrum. Mol. Plant Pathol., 7(2), 71–86. https://doi.org/10.1111/j.1364-3703.2006.00323.x
  14. Garrido, C., González-Rodríguez, V.E., Carbú, M., Husaini, A.M., Cantoral, J. M. (2016). Fungal diseases of strawberry and their diagnosis. In: A.M., Husaini, D., Neri (eds.), Strawberry: growth, development and diseases. CAB Interna-tional, 157–195. https://doi.org/10.1079/9781780646633.0157
  15. Garrido-Gala, J., Higuera, J.-J., Rodríguez-Franco, A., Muñoz-Blanco, J., Amil-Ruiz, F., Caballero, J.L. (2022). A comprehensive study of the WRKY transcription factor family in strawberry. Plants, 11, 1585. https://doi.org/10.3390/plants11121585
  16. Gawel, N.J., Jarret, R.L. (1991). A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Mol. Biol. Rep., 9, 262–266. https://doi.org/10.1007/BF02672076
  17. Hantula, J., Lilja, A., Nuorteva, H., Parikka, P., Werres, S. (2000). Pathogenicity, morphology and genetic variation of Phytophthora cactorum from strawberry, apple, rhododendron, and silver birch. Mycol. Res., 104(9), 1062–1068. https://doi.org/10.1017/S0953756200002999
  18. Horst, R.K. (2008). Westcott’s plant disease handbook, 7th ed. Springer-Verlag, Berlin–Heidelberg–New York. https://doi.org/10.1007/978-1-4020-4585-1
  19. Hu, S., Zhang, S., Xiao, W., Liu, Y., Yu, H., Zhang, C. (2023). Diversity and characterization of resistance to pyraclostrobin in Colletotrichum spp. from strawberry. Agronomy, 13, 2824. https://doi.org/10.3390/agronomy13112824
  20. Hummer, K.E., Hancock, J. (2009). Strawberry genomics: botanical history, cultivation, traditional breeding, and new technologies. In: K.M., Folta, S.E, Gardiner (eds.), Genetics and genomics of rosaceae. Springer, New York, 413–435.
  21. Jiménez, N.P., Feldmann, M.J., Famula, R.A., Pincot, D.D.A., Bjornson, M., Cole, G.S., Knapp, S.J. (2023). Harnessing underutilized gene bank diversity and genomic prediction of cross usefulness to enhance resistance to Phytophthora cactorum in strawberry. Plant Gen., 16, e20275. https://doi.org/10.1002/tpg2.20275
  22. Kurze, S., Bahl, H., Dahl, R., Berg, G. (2001). Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48. Plant Dis., 85(5), 529–534. https://doi.org/10.1094/PDIS.2001.85.5.529
  23. Liang, L., Lin, Z. (2014). Genetic study on resistance to powdery mildew in strawberry. Acta Hortic., 1049, 255‒258. https://doi.org/10.17660/ActaHortic.2014.1049.31
  24. Lifshitz, C., David, N., Shalit, N., Slotzky, S., Tanami, Z., Elad, Y., Dai, N. (2007). Inheritance of powdery mildew resistance in strawberry lines from the Israeli germplasm collection. In: Takeda, F., Handley, D.T., Poling, E.B. (eds.), Proceedings of the NASS/NASGA conference (February 9–12, 2007, Ventura, California). Los Angeles, 74–76.
  25. Lynn, S.C., Dunwell, J.M., Whitehouse, A.B., Cockerton, H.M. (2024). Genetic loci associated with tissue-specificresistance to powdery mildew inoctoploid strawberry (Fragaria × ananassa). Front. Plant Sci., 15, 1376061. https://doi.org/10.3389/fpls.2024.1376061
  26. Ma, L., Haile, Z.M., Sabbadini, S., Mezzetti, B., Negrini, F., Baraldi, E. (2023). Functional characterization of MAN-NOSE-BINDING LECTIN 1, a G-type lectin gene family member, in response to fungal pathogens of strawberry. J. Exp. Bot., 74(1), 149–161. https://doi.org/10.1093/jxb/erac396
  27. Masny, A., Żurawicz, E. (2008). Podatność nowych odmian deserowych truskawki na wertycyliozę w warunkach polowych. [Susceptibility of new dessert strawberry varieties to Verticillium wilt in field conditions]. Zesz. Nauk. Inst. Sadown. Kwiac., 16, 249–255 [in Polish].
  28. Masny, A., Żurawicz, E., Pruski, K., Mądry, W. (2014). Combining ability analysis in 10 strawberry genotypes used in breeding cultivars for tolerance to Verticillium Wilt. J. Amer. Soc. Hort. Sci., 139(3), 275–281. https://doi.org/10.21273/JASHS.139.3.275
  29. McKinney, H.H. (1923). Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. J. Agric. Res., 26(5), 195–217.
  30. Meszka, B., Bielenin, A. (2009). Bioproducts in control of strawberry Verticillium wilt. Phytopathologia, 52, 21–27.
  31. Meszka, B., Masny, A., Bielenin, A., Żurawicz, E. (2005). Podatność wybranych genotypów truskawki na wertycyliozę (Verticillium dahliae Kleb.) [Susceptibility of selected strawberry genotypes to Verticillium wilt (Verticillium dahliae Kleb.)]. In: Zmienność genetyczna i jej wykorzystanie w hodowli roślin ogrodniczych [Genetic variability and its use in horticultural plant breeding]. Michalik, B., Żurawicz E. (eds.). ISK Skierniewice, Poland, 327–331 [in Polish].
  32. Mukherjee, E., Gantait, S. (2024). Strawberry biotechnology: a review on progress over past 10 years. Sci. Hortic., 338, 113618. https://doi.org/10.1016/j.scienta.2024.113618
  33. Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant., 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  34. Nouri, M.T., Rhouma, A., Yahgmour, M.A., Mnari-Hatteb, M., Jraidi, B., Hajlaoui, M.R. (2012). First report of wilt of almond caused by Verticillium dahliae in Tunisia. New Dis. Rep., 26, 19. https://doi.org/10.5197/j.2044-0588.2012.026.019
  35. Olbricht, K., Hanke, M.V. (2008). Strawberry breeding for disease resistance in Dresden. In: M., Boos (eds.), Ecofruit – 13th Intl. Conf. on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing. 18–20 Feb. 2008, Weinsberg, Germany, pp. 144–147.
  36. Orlikowski, L.B., Ptaszek, M., Trzewik, A., Orlikowska, T., Szkuta, G., Meszka, B., Skrzypczak, C. (2012). Risk of horticultural plants by Phytophthora species. Prog. Plant Prot./Post. Ochr. Roślin., 52(1), 92–100.
  37. Orlikowski, L.B., Meszka, B., Ptaszek, M., Łazecka, U., Krawiec, P. (2017). Przyczyny odglebowego zamierania malin: najgroźniejsze patogeny, podobieństwa i róźnice w objawach chorobowych oraz możliwości przeciwdziałania ich wy-stępowaniu [Causes of soil dieback of raspberries: The most dangerous pathogens, similarities and differences in dise-ase symptoms and the possibility of preventing their occurrence]. In: Materiały z XIII Konferencji Sadowniczej w Kraśniku “Jagodowe Trendy 2017” [Proceedings of the XIII Fruit Conference in Kraśnik “Jagodowe Trendy 2017”], Kraśnik, Poland, 1 March 2017, 80–83 [in Polish].
  38. Özer, G., Bayraktar, H. (2016). First report of Verticillium Dahliae Causing Verticillium wilt on Goji berry in Turkey. J. Plant Pathol., 98(3), 677–697.
  39. Parikka, P. (2003). Susceptibility of strawberry varieties to crown rot (Phytophthora cactorum) in greenhouse tests. Acta Hortic., 626, 183–189. https://doi.org/10.17660/ActaHortic.2003.626.24
  40. Parikka, P. (2004). Disease resistance in strawberry breeding programmes – major pathogens in european strawberry pro-duction. Acta Hortic., 649, 49–54. https://doi.org/10.17660/ActaHortic.2004.649.6
  41. Pérez-Jiménez, R.M., De Cal, A., Melgarejo, P., Cubero, J., Soria, C., Zea-Bonilla, T., Larena, I. (2012). Resistance of several strawberry cultivars against three different pathogens. Span. J. Agric. Res., 10(2), 502–512. https://doi.org/10.5424/sjar/2012102-345-11
  42. Pincot, D.D.A., Hardigan, M.A., Cole, G.S., Famula, R.A., Henry, P.M., Gordon, T.R., Knapp, S.J. (2020). Accuracy of genomic selection and long-term genetic gain for resistance to Verticillium wilt in strawberry. Plant Gen., 13(3), e20054. https://doi.org/10.1002/tpg2.20054
  43. Profic-Alwasiak, H. (2000). Choroby korzeni i korony truskawki [Root and crown diseases of strawberries]. Sad Nowoczesny, 4, 9–11 [in Polish].
  44. Rai, M.K., Kalia, R.K., Singh, R., Gangola, M.P., Dhawan, A.K. (2011). Developing stress tolerant plants through in vitro selection – an overview of the recent progress. Environ Exp Bot., 71, 89–98. https://doi.org/10.1016/j.envexpbot.2010.10.021
  45. Ribeiro, O.K. (1978). A source book of the genus Phytophthora. Strauss and Cramer GmbH.
  46. Sanei, S.J., Waliyar, F., Razavi, S.I., Okhovvat, S.M. (2008). Vegetative compatibility, host range and pathogenicity of Verticillium dahliae isolates in Iran. Int. J. Plant Prod., 2, 37–46. https://doi.org/10.22069/ijpp.2012.598
  47. Schafleitner, S., Bonneta, A., Pedeprata, N., Roccaa, D., Chartierc, P., Denoyesa, B. (2013). Genetic variation of re-sistance of the cultivated strawberry to crown rot caused by Phytophthora cactorum. J. Berry Res., 3, 79–91. https://doi.org/10.3233/JBR-130052
  48. Shaw, D.V., Gordon, T.R., Larson, K.D., Gubler, W.D., Hansen, J., Kirkpatrick, S.C. (2010). Strawberry breeding im-proves genetic resistance to Verticillium wilt. California Agric., 64(1), 37–41. https://doi.org/10.3733/ca.v064n01p37
  49. Shaw, D.V., Gordon, T.R., Larson, K.D., Kirkpatrick, S.C. (2005). The effect of Verticillium infection in runner plant propagation nurseries on resistant and susceptible strawberry genotypes. J. Amer. Soc. Hort. Sci., 130, 707–710. https://doi.org/10.21273/JASHS.130.5.707
  50. Shaw, D.V., Gubler, W.D., Larson, K.D., Hansen, J. (1996). Genetic variation for field resistance to Verticillium Dahliae evaluated using genotypes and segregating progenies of California strawberries. J. Amer. Soc. Hort. Sci., 121 (4), 625–628. https://doi.org/10.21273/JASHS.121.4.625
  51. Shaw, D.V., Hansen, J., Browne, G.T., Shaw, S.M. (2008). Components of genetic variation for resistance of strawberry to Phytophthora cactorum estimated using segregating seedling populations and their parent genotypes. Plant Pathol., 57, 210–215. https://doi.org/10.1111/j.1365-3059.2007.01773.x
  52. Shokaeva, D.B., Solovykh, N.V., Skovorodnikov, D.N. (2011). In Vitro selection and strawberry plant regeneration for developing resistance to Botrytis cinerea Pers., Phytophthora cactorum Leb. et Cohn (Schroet) and salinity stress. In: A.M., Husaini, J.A., Mercado (eds.), Genomics, transgenics, molecular breeding and biotechnology of strawberry. Global Science Books, UK, 115–125.
  53. Simmonds, N.W. (1987). Fundamentals of plant breeding. PWRiL, Warsaw, Poland.
  54. Sowik, I., Bielenin, A., Michalczuk, L. (2001). In vitro testing of strawberry resistance to Verticillium dahliae and Phytophthora cactorum. Sci. Hortic., 88(1), 31–40. https://doi.org/10.1016/S0304-4238(00)00195-3
  55. Sowik, I., Borkowska, B., Markiewicz, M. (2016). The activity of mycorrhizal symbiosis in suppressing Verticillium wilt in susceptible and tolerant strawberry (Fragaria × ananassa Duch.) genotypes. Appl. Soil Ecol., 101, 152–164. https://doi.org/10.1016/j.apsoil.2016.01.021
  56. Sowik, I., Markiewicz, M., Michalczuk, L. (2015). Stability of Verticillium dahliae resistance in tissue culture-derived strawberry somaclones. Hort. Sci., 42, 141–148. https://doi.org/10.17221/360/2014-HORTSCI
  57. Sowik, I., Michalczuk, L., Wójcik, D. (2008). A method for in vitro testing strawberry susceptibility to Verticillium wilt. J. Fruit Ornam. Plant Res., 16, 111–121.
  58. Statistica 13.1. (2020). StatSoft Polska. Available at: www.statsoft.pl [date of access:12.01.2025]
  59. Ukalska, J., Mądry, W., Ukalski, K., Masny, A., Żurawicz, E. (2006). Patterns of variation and correlation among traits in a strawberry germplasm collection (Fragaria × ananassa Duch.). J. Fruit Ornam. Plant Res., 14, 5–22.
  60. Vondracek, K., Altpeter, F., Liu, T., Lee, S. (2024). Advances in genomics and genome editing for improving strawberry (Fragaria × ananassa). Front Genet., 15, 1382445. https://doi.org/10.3389/fgene.2024.1382445
  61. Wijerathna-Yapa, A., Hiti-Bandaralage, J. (2023). Tissue culture – a sustainable approach to explore plant stresses. Life, 13, 780. https://doi.org/10.3390/life13030780
  62. Żebrowska, J., Hortyński, J., Cholewa, T., Honcz, K. (2006). Resistance to Verticillium dahliae (Kleb.) in the strawberry breeding lines. Commun. Agric. Appl. Biol. Sci., 71(3 Pt B), 1031–1036.
  63. Żebrowska, J.I. (2010). In vitro selection in resistance breeding of strawberry (Fragaria × ananassa duch.). Commun. Agric. Appl. Biol. Sci., 75 (4), 699–704.
  64. Żebrowska, J.I. (2011). Efficacy of resistance selection to Verticillium wilt in strawberry (Fragaria × ananassa Duch.) tissue culture. Acta Agrobot., 64 (3), 3–12. https://doi.org/10.5586/aa.2011.024
  65. Zurn, J.D., Ivors, K.L., Cole, G.S., Knapp, S.J., Hummer, K.E., Hancock, J.F., Finn, Ch. E., Bassil, N.V. (2020). Assessing Cultivated strawberries and the Fragaria Supercore for resistance to soilborne pathogens. J. Am. Pom. Soc. (APS), 74, 18–23.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.