Skip to main navigation menu Skip to main content Skip to site footer

Vol. 19 No. 3 (2020)

Articles

FATTY ACIDS AND PHYSIOLOGICAL RESPONSES OF CORN LEAVES EXPOSED TO HEAVY METALS

DOI: https://doi.org/10.24326/asphc.2020.3.1
Submitted: March 14, 2019
Published: 2020-06-29

Abstract

Heavy metals affect biochemical pathway by changing the fatty acid composition in plant cells. The high concentration of heavy metals impresses biochemical pathway and changes fatty acid compositions of plant cells. Fatty acids participate in various biological processes and have the functional role in regulating membrane functions in plants. In the present study, heavy metal content was analyzed with ICP-MS, fatty acid composition was investigated with GC and physiological parameters were determined with spectrophotometrically in the leaves of tomato subjected to increasing doses of heavy metals. In this study, the treatment of heavy metals on the growth medium changed the fatty acid contents of corn. The application of Cu significantly increased the level of palmitic acid and oleic acid. The treatment of Pb raised the content of oleic acid, whereas it significantly decreased the content of α-linolenic acid and erucic acid at 20 and 50 mg kg–1, respectively. The addition of Cd significantly increased the level of oleic acid and linoleic acid; however, it significantly decreased the content of α-linolenic acid and erucic acid. Cu and Pb significantly raised the proline content. The application of Cu and Cd showed similar effect on hydrogen peroxide and the higher doses of them increased the content of H2O2. The level of lipid peroxidation significantly increased in response to all applied concentration of Cu. The results obtained in this study show that the aapplication of heavy metals changed the content of fatty acids, particularly that of oleic acid significantly increased in response to them. The levels of proline and lipid peroxidation generally increased together with oleic acid and palmitic acid in the leaves in reply to copper.

References

  1. Bates, L.S., Waldren. R.P., Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205–207. DOI: 10.1007/BF00018060
  2. Beisson, F., Bonaventure, G., Pollard, M., Ohlrogge, J. (2007). The Acyltransferase GPAT5 Is Required for the Synthesis of Suberin in Seed Coat and Root of Arabidopsis. Plant Cell, 19, 1351–368. DOI: 10.1105/tpc.106.048033
  3. Bligh, E.G., Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37, 911–917. DOI: dx.doi.org/10,1139/cjm2014-0700
  4. Chalbi, N., Hessini, K., Gandour, M., Mohamed, S.N., Smaoui, A., Abdelly, C., Ben Youssef, N. (2013). Are changes in membrane lipids and fatty acid composition related to salt-stress resistance in wild and cultivated barley? J. Plant Nutr. Soil Sci., 176, 138–147. DOI: 10.1002/jpln.201100413
  5. Deleanu, M., Sanda, G.M., Stancu, C.S., Popa, M.E., Sima, A.V. (2016). Profiles of fatty acids and the main lipid peroxidation products of human atherogenic low density lipoproteins. Rev. Chim., 67, 2–7.
  6. Demirevska-Kepova, K., Simova-Stoilova, L., Stoyanova, Z.P., Feller, U. (2006). Cadmium Stress in Barley: Growth, Leaf Pigment, and Protein Composition and Detoxification of Reactive Oxygen Species. J. Plant. Nutr., 29, 451–468. DOI: 10.1080/01904160500524951
  7. Djebali, W., Zarrouk, M., Brouquisse, R., El-Kahoui, S., Limam, F., Ghorbel, M.H., Chaïbi, W. (2005). Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon esculentum) chloroplast membranes. Plant Biol., 7, 358–368. DOI: 10.1055/s-2005-837696
  8. Gomez, R.E., Joubes, J., Valentin, N., Batoko, H., Satiat-Jeunemaitre, B., Bernard, A. (2018). Lipids in membrane dynamics during autophagy in plants. J. Exp. Bot. 69, 1287–1299. DOI: 10.1093/jxb/erx392
  9. Gonçaalves, J.F., Becker, A.G., Cargnelutti, D., Tabaldi, L.A., Pereira, L.B., Battisti, V., Spanevello, R.M., Morsch, V.M., Nicoloso, F.T., Schetinger, M.R.C. (2007). Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings. Brazilian J. Plant Physiol., 19, 223–232. DOI: 10.1590/S1677-04202007000300006.
  10. Gratao, P.L., Monteiro, C.C., Antunes, A.M., Peres, L.E.P., Azevedo, R.A. (2008). Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress. Ann. Appl. Biol., 153, 321–333. DOI: 10.1111/j.1744-7348.2008.00299.x
  11. Guedard, M.L., Faure, O., Besseoule, J.J. (2012). Early changes in the fatty acid composition of photosynthetic membrane lipids from Populus nigra grown on a metallurgical landfill. Chemosphere, 88(6), 693-698. DOI: 10.1016/j.chemosphere.2012.03.079
  12. Guo, T.R., Zhang, G.P., Zhang, Y.H. (2007). Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloids Surfaces B Biointerfaces, 57, 182–188. DOI: 10.1016/j.colsurfb.2007.01.013
  13. Hasan, S.A., Fariduddin, Q., Ali, B., Hayat, S., Ahmad, A. (2009). Cadmium: Toxicity and tolerance in plants. J. Environ. Biol., 30(2), 165–174.
  14. Hassan, M., Mansoor, S. (2014). Oxidative stress and antioxidant defense mechanism in mung bean seedlings after lead and cadmium treatments. Turkish J. Agric. For., 38, 55–61. DOI: 10.3906/tar-1212-4
  15. Hou, W., Chen, X., Song, G., Wang, Q., Chi, C.C. (2007). Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol. Biochem., 45, 62–69. DOI: 10.1016/j.plaphy.2006.12.005
  16. Iba, K. (2002). Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol., 53, 225–245. DOI: 10.1146/annurev.arplant.53.100201.160729
  17. John, R., Ahmad, P., Gadgil, K., Sharma, S. (2008). Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ., 54, 262–270.
  18. Kaur, G., Asthir, B. (2015). Proline: a key player in plant abiotic stress tolerance. Biol. Plant 59, 609–619. DOI: 10.1007/s10535-015-0549-3
  19. Kisa, D. (2018). The Responses of Antioxidant System against the Heavy Metal-Induced Stress in Tomato. J. Nat. Appl. Sci., 22, 1–6. DOI: 10.19113/sdufbed.52379
  20. Kısa, D. (2017). Expressions of glutathione-related genes and activities of their corresponding enzymes in leaves of tomato exposed to heavy metal. Russ J Plant Physiol 64:876–882. DOI: 10.1134/S1021443717060048.
  21. Le Guédard, M., Faure, O., Bessoule, J.J. (2012). Soundness of in situ lipid biomarker analysis: Early effect of heavy metals on leaf fatty acid composition of Lactuca serriola. Environ. Exp. Bot., 76, 54–59. DOI: 10.1016/j.envexpbot.2011.10.009
  22. Liu, X., Huang, B. (2004). Changes in Fatty Acid Composition and Saturation in Leaves and Roots of Creeping Bentgrass Exposed to High Soil Temperature. J. Am. Soc. Hortic. Sci., 129, 795–801.
  23. Maiti, S., Ghosh, N., Mandal, C., Das, K., Dey, N., Adak, M.K. (2012). Responses of the maize plant to chromium stress with reference to antioxidation activity. Brazilian J. Plant Physiol. 24, 203–212. DOI: 10.1590/S1677-04202012000300007
  24. Mithöfer, A., Schulze, B., Boland, W. (2004). Biotic and heavy metal stress response in plants: Evidence for common signals. FEBS Lett., 566, 1–5. DOI: 10.1016/j.febslet.2004.04.011
  25. Moradkhani, S., Ali, R., Nejad, K., Dilmaghani, K. (2012). Effect of salicylic acid treatment on cadmium toxicity and leaf lipid composition in sunflower. J. Stress Physiol. Biochem., 8, 78–89.
  26. Morsy, A.A., Salama, K.H.A., Kamel, H.A., Mansour, M.M.F. (2012). Effect of heavy metals on plasma membrane lipids and antioxidant enzymes of Zygophyllum species. Eurasian J. Biosci., 1–10. DOI: 10.5053/ejobios.2012.6.0.1
  27. Mourato, M.P., Moreira, I.N., Leitão, I., Pinto, F.R., Sales, J.R., Martins, L.L. (2015). Effect of heavy metals in plants of the genus Brassica. Int. J. Mol. Sci., 16, 17975–17998. DOI: 10.3390/ijms160817975
  28. Niu, L., Liao, W. (2016). Hydrogen Peroxide Signaling in Plant Development and Abiotic Responses: Crosstalk with Nitric Oxide and Calcium. Front Plant Sci., 7, 1–14. DOI: 10.3389/fpls.2016.00230
  29. Niu, Y., Xiang, Y. (2018). An Overview of Biomembrane Functions in Plant Responses to High-Temperature Stress. Front Plant Sci., 9(915), 1–18. DOI: 10.3389/fpls.2018.00915
  30. Pál, M., Horváth, E., Janda, T., Páldi, E., Szalai, G. (2005). Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays) plants. Physiol. Plant 125, 356–364. DOI: 10.1111/j.1399-3054.2005.00545.x
  31. Park, W., Feng, Y., Kim, H., Suh, M.C., Ahn, S.J. (2015). Changes in fatty acid content and composition between wild type and CsHMA3 overexpressing Camelina sativa under heavy-metal stress. Plant Cell. Rep. 34, 1489–1498. DOI: 10.1007/s00299-015-1801-1
  32. Rabei, A., Hichami, A., Beldi, H., Bellenger, S., Khan, N.A., Soltani, N. (2018). Fatty acid composition, enzyme activities and metallothioneins in Donax trunculus (Mollusca, Bivalvia) from polluted and reference sites in the Gulf of Annaba (Algeria): Pattern of recovery during transplantation. Environ Pollut., 237, 900–907. DOI: 10.1016/j.envpol.2018.01.041
  33. Rahayu, S.M., Suseno, S.H., Ibrahim, B. (2014). Proximate, latty acid profile and heavy metal content of selected by-catch fish species from Muara Angke, Indonesia. Pakistan J. Nutr., 13, 480–485.
  34. Savchenko, T., Walley, J.W., Chehab, E.W., Xiao, Y., Kaspi, R., Pye, M.F., Mohamed, M.E., Lazarus, C.M., Bostock, R.M., Dehesh, K. (2010). Arachidonic Acid: An Evolutionarily Conserved Signaling Molecule Modulates Plant Stress Signaling Networks. Plant Cell, 22, 3193–3205. DOI: 10.1105/tpc.110.073858
  35. Schat, H., Sharma, S.S., Vooijs, R. (1997). Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiol. Plant, 101, 477–482. DOI: 10.1111/j.1399-3054.1997.tb01026.x
  36. Sreenivasulu, N., Ramanjulu, S., Ramachandra-Kini, K., Prakash, H.S., Shekar-Shetty, H., Savithri, H.S., Sudhakar, C. (1999). Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Sci., 141, 1–9. DOI: 10.1016/S0168-9452(98)00204-0
  37. Sun, R.L., Zhou, Q.X., Sun, F.H., Jin, C.X. (2007). Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ. Exp. Bot., 60, 468–476. DOI: 10.1016/j.envexpbot.2007.01.004
  38. Tamás, L., Dudíková, J., Ďurčeková, K., Halušková, L., Huttová, J., Mistrík, I., Ollé, M. (2008). Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. J. Plant Physiol., 165, 1193–1203. DOI: 10.1016/j.jplph.2007.08.013
  39. Upchurch, R.G. (2008). Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett. 30, 967–977. DOI: 10.1007/s10529-008-9639-z
  40. Velikova, V., Yordanov, I., Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci. 151, 59–66. DOI: 10.1016/Le Guédard, M., Faure, O., Bessoule, J.J. (2012). Soundness of in situ lipid biomarker analysis: Early effect of heavy metals on leaf fatty acid composition of Lactuca serriola. Environ. Exp. Bot., 76, 54–59. DOI: 10.1016/j.envexpbot.2011.10.009
  41. Liu, X., Huang, B. (2004). Changes in Fatty Acid Composition and Saturation in Leaves and Roots of Creeping Bentgrass Exposed to High Soil Temperature. J. Am. Soc. Hortic. Sci., 129, 795–801.
  42. Maiti, S., Ghosh, N., Mandal, C., Das, K., Dey, N., Adak, M.K. (2012). Responses of the maize plant to chromium stress with reference to antioxidation activity. Brazilian J. Plant Physiol. 24, 203–212. DOI: 10.1590/S1677-04202012000300007
  43. Mithöfer, A., Schulze, B., Boland, W. (2004). Biotic and heavy metal stress response in plants: Evidence for common signals. FEBS Lett., 566, 1–5. DOI: 10.1016/j.febslet.2004.04.011
  44. Moradkhani, S., Ali, R., Nejad, K., Dilmaghani, K. (2012). Effect of salicylic acid treatment on cadmium toxicity and leaf lipid composition in sunflower. J. Stress Physiol. Biochem., 8, 78–89.
  45. Morsy, A.A., Salama, K.H.A., Kamel, H.A., Mansour, M.M.F. (2012). Effect of heavy metals on plasma membrane lipids and antioxidant enzymes of Zygophyllum species. Eurasian J. Biosci., 1–10. DOI: 10.5053/ejobios.2012.6.0.1
  46. Mourato, M.P., Moreira, I.N., Leitão, I., Pinto, F.R., Sales, J.R., Martins, L.L. (2015). Effect of heavy metals in plants of the genus Brassica. Int. J. Mol. Sci., 16, 17975–17998. DOI: 10.3390/ijms160817975
  47. Niu, L., Liao, W. (2016). Hydrogen Peroxide Signaling in Plant Development and Abiotic Responses: Crosstalk with Nitric Oxide and Calcium. Front Plant Sci., 7, 1–14. DOI: 10.3389/fpls.2016.00230
  48. Niu, Y., Xiang, Y. (2018). An Overview of Biomembrane Functions in Plant Responses to High-Temperature Stress. Front Plant Sci., 9(915), 1–18. DOI: 10.3389/fpls.2018.00915
  49. Pál, M., Horváth, E., Janda, T., Páldi, E., Szalai, G. (2005). Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays) plants. Physiol. Plant 125, 356–364. DOI: 10.1111/j.1399-3054.2005.00545.x
  50. Park, W., Feng, Y., Kim, H., Suh, M.C., Ahn, S.J. (2015). Changes in fatty acid content and composition between wild type and CsHMA3 overexpressing Camelina sativa under heavy-metal stress. Plant Cell. Rep. 34, 1489–1498. DOI: 10.1007/s00299-015-1801-1
  51. Rabei, A., Hichami, A., Beldi, H., Bellenger, S., Khan, N.A., Soltani, N. (2018). Fatty acid composition, enzyme activities and metallothioneins in Donax trunculus (Mollusca, Bivalvia) from polluted and reference sites in the Gulf of Annaba (Algeria): Pattern of recovery during transplantation. Environ Pollut., 237, 900–907. DOI: 10.1016/j.envpol.2018.01.041
  52. Rahayu, S.M., Suseno, S.H., Ibrahim, B. (2014). Proximate, latty acid profile and heavy metal content of selected by-catch fish species from Muara Angke, Indonesia. Pakistan J. Nutr., 13, 480–485.
  53. Savchenko, T., Walley, J.W., Chehab, E.W., Xiao, Y., Kaspi, R., Pye, M.F., Mohamed, M.E., Lazarus, C.M., Bostock, R.M., Dehesh, K. (2010). Arachidonic Acid: An Evolutionarily Conserved Signaling Molecule Modulates Plant Stress Signaling Networks. Plant Cell, 22, 3193–3205. DOI: 10.1105/tpc.110.073858
  54. Schat, H., Sharma, S.S., Vooijs, R. (1997). Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiol. Plant, 101, 477–482. DOI: 10.1111/j.1399-3054.1997.tb01026.x
  55. Sreenivasulu, N., Ramanjulu, S., Ramachandra-Kini, K., Prakash, H.S., Shekar-Shetty, H., Savithri, H.S., Sudhakar, C. (1999). Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Sci., 141, 1–9. DOI: 10.1016/S0168-9452(98)00204-0
  56. Sun, R.L., Zhou, Q.X., Sun, F.H., Jin, C.X. (2007). Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ. Exp. Bot., 60, 468–476. DOI: 10.1016/j.envexpbot.2007.01.004
  57. Tamás, L., Dudíková, J., Ďurčeková, K., Halušková, L., Huttová, J., Mistrík, I., Ollé, M. (2008). Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. J. Plant Physiol., 165, 1193–1203. DOI: 10.1016/j.jplph.2007.08.013
  58. Upchurch, R.G. (2008). Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett. 30, 967–977. DOI: 10.1007/s10529-008-9639-z
  59. Velikova, V., Yordanov, I., Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treat S0168-9452(99)00197-1
  60. Verdoni, N., Mench, M., Cassagne, C., Bessoule, J.J. (2001). Fatty acid composition of tomato leaves as biomarkers of metal-contaminated soils. Environ. Toxicol. Chem. Ecotoxicol., 20, 382–388. DOI: 10.1897/1551-5028(2001)020
  61. Verma, S., Dubey, R.S. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci., 164, 645–655. DOI: 10.1016/S0168-9452(03)00022-0
  62. Walley, J.W., Kliebenstein, D.J., Bostock, R.M., Dehesh, K. (2013). Fatty acids and early detection of pathogens. Curr. Opin. Plant Biol., 16, 520–526. DOI: 10.1016/j.pbi.2013.06.011
  63. Zemanová, V., Pavlík, M., Pavlíková, D., Kyjaková, P. (2015). Changes in the contents of amino acids and the profile of fatty acids in response to cadmium contamination in spinach. Plant Soil Environ., 61, 285–290. DOI: 10.17221/274/2015-PSE

Downloads

Download data is not yet available.

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.