Skip to main navigation menu Skip to main content Skip to site footer

Vol. 19 No. 4 (2020)

Articles

In-vitro PHYSIOCHEMICAL RESPONSES OF Viola odorata PLANT TO COMBINED SALT AND DROUGHT STRESS

DOI: https://doi.org/10.24326/asphc.2020.4.5
Submitted: March 18, 2019
Published: 2020-08-28

Abstract

Nowadays sweet violet (Viola odorata) is an ornamental-medical plant that considered as endangered and threatened species. On the other hand, biotic and abiotic stresses impose a major threat to agriculture. Here, we investigated the effects of salinity and drought stresses, based on polyethylene glycol (PEG; 1, 1.5, 2, 2.5, 3 and 4%) and NaCl (0, 50, 100 and 150 mM), on growth characteristics, physiological parameters and antioxidant defense system of sweet violet under in-vitro conditions. The influences of NaCl and PEG gradients in the culture media on plant height, green leaf percentage, root dry weight (DW), and electrolyte leakage (EL) was described by a linear or quadratic model. All measured parameters (except EL) decreased when NaCl or PEG concentration increased. In contrast, EL increased other traits. Moreover, with increasing in salinity and drought severity, shoot DW decreased, while antioxidant enzymes activity such as catalase (CAT), peroxidase (POX) and superoxide dismutase (SOD) and proline content increased. However, total soluble carbohydrates (TSC), at all drought levels, increased with increasing NaCl concentration up to 50 or 100 mM, and then decreased. Most variations in the shoot DW, CAT activity, proline and TSC contents due to salt stress occurred at low concentration of PEG. Overall, our findings highlight that the effect of combined drought and salt stress was more severe. However, the sensitivity of the plant to drought or salinity stress was higher in the absence of other stress.

References

  1. Ahmed, I.M., Dai, H.X., Zheng, W., Cao, F.B., Zhang, G.P., Sun, D.F., Wu, F.B. (2013). Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol. Biochem., 63, 49–60. DOI: 10.1016/j.plaphy.2012.11.004
  2. Asada, K. (1999). The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 601–639. DOI: 10.1146/annurev.arplant.50.1.601
  3. Asadi-Sanam, S., Pirdashti, H., Hashempour, A., Zavareh, M., Nematzadeh, G.A., Yaghoubian, Y. (2015). The physiological and biochemical responses of eastern purple coneflower to freezing stress. Russ. J. Plant Physiol., 62(4), 515–523.
  4. Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39, 205–207.
  5. Beyer, W.F., Fridovich, I. (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal. Biochem., 161, 559–566. DOI: 10.1016/0003-2697(87)90489-1
  6. Bian, S.H., Jiang, Y. (2009). Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Sci. Hortic., 120, 264–270. DOI: 10.1016/j.scienta.2008.10.014
  7. Bor, M., Ozdemir, F., Turkan, I. (2003). The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci., 164, 77–84. DOI: 10.1016/S0168-9452(02)00338-2
  8. Bown, D. (1995). Encyclopaedia of herbs and their uses. Dorling Kindersley, London, 424 pp.
  9. Chandlee, J.M., Scandalios, J.G. (1984). Analysis of variants affecting the catalase development program in maize scutellum. Theor. Appl. Genet., 69, 71–77. DOI: 10.1007/BF00262543
  10. Dionisio-Sese, M.L., Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Sci., 135, 1–9.
  11. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analyt. Chem., 28, 350–356. DOI: 10.1016/S0168-9452(98)00025-9
  12. El-Missiry, A.M. (2012). Antioxidant Enzymes and Human Health. In: Oxidative Stress Studies in Plant Tissue Culture, Şen, A. (eds.). Open access peer-reviewed, p. 59–88.
  13. Farghaly, F.A., Radi, A.A, Abdel-Wahab, D.A., Hamada, A.M. (2016). Effect of salinity and sodicity stresses on physiological response and productivity in Helianthus annuus. Acta Biol. Hung., 67(2), 184–194. DOI: 10.1556/018.67.2016.2.6
  14. Gill, S.S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48, 909–930. DOI: 10.1016/j.plaphy.2010.08.016
  15. Hossain, Z., Mandal, A.K.A., Datta, S.K., Biswas, A.K. (2007). Development of NaCl-tolerant line in Chrysanthemum morifolium Ramat. through shoot organogenesis of selected callus line. J. Biotechnol., 129, 658–667. DOI: 10.1016/j.jbiotec.2007.02.020
  16. Hussain, Kh., Majeed, A., Nawaz, Kh., Nisar, M.F., Khan, F., Afghan, Sh., Kazim, A. (2010). Comparative study for salt stress among seed, root stock and direct regenerated Violet (Viola odorata L.) seedlings in relation to growth, ion contents and enzyme activities. Afr. J. Biotechnol., 9(14), 2108–2117.
  17. Hussain, Kh., Nawaz, Kh., Majeed, A., Ilyas, U., Lin, F., Ali, K., Nisar, M.F. (2011). Role of exogenous salicylic acid applications for salt tolerance in Violet. Sarhad J. Agric., 27(2), 171–175.
  18. Jaleel, C.A., Gopi, R., Manivannan, P., Panneerselvam, R. (2007). Responses of antioxidant defense system of Catharanthus roseus (L.) to paclobutrazol treatment under salinity. Acta Physiol. Plant., 29, 205–209.
  19. Janská, A., Zelenková. S., Klíma, M., Vyvadilová, M., Prášil, I.T. (2010). Freezing tolerance and proline con­tent of in vitro selected hydroxyproline resistant winter oilseed rape. Czech J. Genet. Plant Breed, 46, 35–40. DOI: 10.17221/52/2009-CJGPB
  20. Kaloo, Z.A., Akhtar, R., Wafai, Z., Wafai, B.A. (2013). Effect of growth regulators on the in vitro multiplication of Viola odorata. Int. J. Med. Plant Res., 2 (4), 187–189.
  21. Koca, H., Zdemir, F.O., Turkan, I. (2006). Effect of salt stress on chlorophyll fluorescence, lipid peroxidation, superoxide dismutase and peroxidase activities of cultivated tomato (L. esculentum) and its wild relative (L. pennellii). Biol. Plant, 50(4), 745–748. DOI: 10.1007/s10535-006-0121-2
  22. Kochba, J., Lavee, S., Spiegel, P.R. (1977). Differences in peroxidase activity and isoenzymes in embryogenic and non-embryogenic “Shamouti” orange ovular callus lines. Plant Cell Physiol., 18, 463–467. https://doi.org/10.1093/oxfordjournals.pcp.a075455
  23. Kulkarni, M., Deshpande, U. (2007). In vitro screening of tomato genotypes for drought resistance using polyethylene glycol. Afr. J. Biotechnol., 6, 691–696.
  24. Lim, T.K. (2014). Edible Medicinal and Non Medicinal Plants: Vol. 8, Flowers. Springer Science, New York, London, 1038 p.
  25. Mantri, N., Patade, V., Penna, S., Ford, R., Pang, E.C.K. (2012). Abiotic stress responses in plants-present and future. In: Abiotic stress responses in plants: metabolism to productivity, Ahmad P., Prasad, M.N.V. (eds.). Springer, Science + Business Media NY, USA, pp. 1–19.
  26. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7, 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9
  27. Mokhtari, A., Otroshy, M., Barekat T. (2015). Plant regeneration through callus induction on medicinal herb Viola odorata – role of plant growth regulators and explants. J. Agric. For., 61 (3), 161–170. DOI: 10.17707/AgricultForest.61.3.16
  28. Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant., 15, 473–497.
  29. Muscolo, M., Sidari, U., Anastasi, C., Santonoceto, Maggio, A. (2014). Effect of PEG-induced drought stress on seed germination of four lentil genotypes. J. Plant Interact., 9(1), 354–363. https://doi.org/10.1080/17429145.2013.835880
  30. Naeem, M., Naveed, I., Saqlan naqvi, S.M., Mahmood, T. (2013). Standardization of tissue culture conditions and estimation of free scavenging activity in Viola odorata L. Pak. J. Bot., 45(1), 197–202.
  31. Niu, C.F., Wei, W., Zhou, Q.Y., Tian, A.G., Hao, Y.J., Zhang, W.K., Ma, B., Lin, Q., Zhang, Z.B., Zhang, J.S., Chen, S.Y. (2012). Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ., 35(6), 1156–1170. DOI: 10.1111/j.1365-3040.2012.02480.x
  32. Patade, V.Y., Bhargava, S., Suprasanna, P. (2011). Salt and drought tolerance of sugarcane under iso-osmotic salt and water stress: growth, osmolytes accumulation and antioxidant defense. J. Plant Interact., 6(4), 275–282. https://doi.org/10.1080/17429145.2011.557513
  33. Pirdashti, H., Yaghoubian, Y., Goltapeh, E., Hosseini, S. (2012). Effect of mycorrhiza-like endophyte (Sebacina vermifera) on growth, yield and nutrition of rice (Oryza sativa L.) under salt stress. J. Agric. Technol., 8(5), 1651–1661.
  34. Piwowarczyk, B., Kaminska, A.I., Rybinski, W. (2014). Influence of PEG Generated Osmotic Stress on Shoot Regeneration and Some Biochemical Parameters in Lathyrus Culture. Czech J. Genet. Plant Breed, 50(2), 77–83. DOI: 10.13140/2.1.4330.3040
  35. Queiros, F., Fidalgo, F., Santos, I., Salema, R. (2007). In vitro selection of salt tolerant cell lines in Solanum tuberosum L. Biol. Plant, 51, 728–734.
  36. Rai, M.K., Kalia, R.K., Singh, R., Gangola, M.P., Dhawan, A.K. (2011). Developing stress tolerant plants through in vitro selection – An overview of the recent progress. Environ. Exp. Bot., 71, 89–98. https://doi.org/10.1016/j.envexpbot.2010.10.021
  37. Rao, K.V.M., Raghavendra, A.S., Reddy, K.J. (2006). Physiology and Molecular Biology of Stress Tolerance in Plants. Springer-Netherlands. DOI: 10.1007/1-4020-4225-6
  38. Reddy, A.R., Raghavendra, A.S. (2006). Photooxidative stress. In: Physiology and Molecular Biology of Stress Tolerance in Plants, Rao K.V.M, Raghavendra, A.S., Reddy, K.J. (eds.). Springer-Netherlands, pp. 157–186. DOI: 10.1007/1-4020-4225-6
  39. Shi, H., Wang, Y., Cheng, Z., Ye, T., Chan, Z. (2012). Analysis of natural variation in bermudagrass (Cynodon dactylon) reveals physiological responses underlying drought tolerance. Plos One, 7, 53422. DOI: 10.1371/journal.pone.0053422
  40. Sudhakar, C., Lakshmi, A., Giridarakumar, S. (2001). Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci., 161, 613–619. DOI: 10.1016/S0168-9452(01)00450-2
  41. Talukdar, T. (2012). Development of NaCl-tolerant line in an endangered ornamental, Adenium multiflorum Klotzsch through in vitro selection. Int. J. Recent Sci. Res., 3(10), 812–821.
  42. Velikova, V., Yordanov, I., Edreva, A. (2000). Oxidative stress and some antioxidant system in acid treated bean plants: Protective role of exogenous polyamines. Plant Sci., 151, 59–66. https://doi.org/10.1016/S0168-9452(99)00197-1
  43. Verbruggen, N., Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids., 35, 753–759. DOI: 10.4161/psb.4.11.9797
  44. Wang, L.W., Showalter, A.M., Ungar, I.A. (1997). Effect of salinity on growth, ion content, and cell wall chemistry in Atriplex prostrata (Chenopodiaceae). Am. J. Bot., 84, 1247–1255.
  45. Zhang, C.P., Li, Y.C., Yuan, F.G., Hu, S.J., Liu, H.Y., He, P. (2013). Role of 5-aminolevulinic acid in the salinity stress response of the seeds and seedlings of the medicinal plant Cassia obtusifolia L. Bot. Stud., 54, 18. DOI: 10.1186/1999-3110-54-18

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.