Skip to main navigation menu Skip to main content Skip to site footer

Vol. 11 No. 5 (2012)

Articles

STUDY OF ANTIFUNGAL ACTIVITY OF Bacilli SPECIES CULTURED ON AGRO-INDUSTRIAL WASTES

Submitted: December 30, 2020
Published: 2012-10-31

Abstract

The three Bacillus species isolated from petroleum refinery waste were examined for antifungal activity on brewery effluents and molasses for biotechnological applications. Bacillus strains were identified by three different methods: 16S rRNA gene sequences, BIOLOG system and fatty acid analysis (FAME). The results demonstrated the ability of all three Bacillus strains cultured on brewery effluents and molasses to inhibit mycelial growth of the 10 tested fungi to varying degrees measured by agar plate inhibition assays. Fungi inhibited to the greatest degree as measured by the zones of inhibition were Botrytis cinerea A 258, Phomopsis viticola W 977, Septoria carvi K 2082, Colletotrichum gloeosporioides A 259, Phoma complanata A 233 and Phoma exigua var. exigua A 175. It was also observed that the fungal mycelial growth was inhibited by the cell-free supernatants, indicating lipoprotein-like activity of antifungal agents (mainly biosurfactants).
Tested fungi were most sensitive to the Bacilli supernatants obtained from the molasses cultures including: B. cinerea A 258, R. solani W 70, S. sclerotiorum K 2291,
Phomopsis diachenii K 657, C. dematium K 425, P. complanata A 233, P. exigua var. exigua A 175. In the previous study it was shown that Bacillus species produced biosurfactants. Application of natural products such as these Bacillus species or their byproducts may be a new approach to phytopathogen control therefore reducing the need for fungicides.

References

Arguelles-Arias A., Ongena M., Halimi B., Lara Y., Brans A., Joris B., Fickers P., 2009. Bacillus amyloliquefaciens GAI as a source of potent antibiotic and other secondary metabolites for biocontrol of plant pathogens. Microbial. Cell Factories, 8 (1), 2–12.
Ash C., Priest F.G., Collins M.D., 1992. Molecular identification of rRNA group 3 bacilli using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie von Leeuwenhoek, 64 (2), 253–260.
Berry C.J., Story S., Altman D.J., Upchurch R., Whitman W., Singleton W., Płaza G.A., Brigmon R.L., 2006. Biological Treatment of Petroleum and Radiological Contaminated Soil, in: Clayton, C, Lindner, A (Eds), Innovative Approaches for the Remediation of Subsurface-Contaminated Hazardous Waste Sites: Bridging Flask and Field Scales. Oxford University Press.
Cho M.J.C., Kim Y.K., Ka J.O., 2004. Molecular differentiation of Bacillus spp. antagonistic against phytopathogenic fungi causing damping-off disease. J. Microbiol. Biotechnol., 14 (2), 599–606.
Chun J., Bae K.S., 2000. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequence. Antonie van Leeuwenhoek, 78 (1), 123–127.
Deleu M., Paquot M., 2007. From renewable vegetables resources to microorganisms: new trends in surfactants. C.R. Chimie, 4 (3), 641–646.
Emmert E.A.B., Handelsman J., 1999. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol. Letters, 171 (1), 1–9.
Gordillo M.A., Navarro A.R., Benitez L.M., Tories de Plaza M.I., Maldonado M.C., 2009. Preliminary study and improve the production of metabolites with antifungal activity by a Bacillus sp. strain IBA 33. Microbiol. Insights, 2 (1), 15–24.
Grover M., Nain L., Singh S.B., Saxena A.K., 2010. Molecular and biochemical approaches for characterization of antifungal trait of a potent biocontrol agent Bacillus subtilis RP24. Curr. Microbiol., 60 (1), 99–106.
Guinebretiere M.H., Berge O., Normand P., Morris C., Carlin F., Nguyen-The C., 2001. Identification of bacteria in pasteurized zucchini purees stored at different temperatures and comparison with those found in other pasteurized vegetable purees. Appl. Environ. Microbiol., 67 (12), 4520–4530.
Hutsebaut D., Vandroemme J., Heyrman J., Dawyndt P., Vandenabeele P., Moens L., Vos de. P., 2006. Raman microspectroscopy as an identification tool within the phylogenetically homogeneous ‘Bacillus subtilis”-group. Sys. Appl. Microbiol., 29 (3), 650–660.
Jacobsen B.J., Zidack N.K., Larson B.J., 2004. The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology, 94 (11), 1272–1275.
Jacques P., 2011. Surfactin and other lipopeptides from Bacillus spp. in: Soberon-Chavez, G. (Ed), Biosurfactants. From genes to applications. Springer-Verlag Berlin Heidelberg.
Johnson A.R., McCarter, S.M., Jaworski C.A., Williamson R.E., 1979. Chemical control of nematodes and soil-borne plant-pathogenic fungi on cabbage transplants. J. Nematol., 11 (1) 138–1434.
Joshi S., Bharucha C., Desai A.J., 2008. Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. Biores. Technol., 99 (10), 4603–4608.
Król, E., 2004. Trichoderma and other microorganisms in the control of Phomopsis viticola. Sacc. Phytopatol. Pol., 31(1), 25–31.
La Duc M.T., Satomi M., Venkateswaran M.K., 2004. Bacillus odysseyi sp. nov., a round-sporeforming bacillus isolated from the Mars Odyssey spacecraft. Internat. J. Syst. Evol. Microbiol., 54 (1), 195–201.
Machowicz–Stefaniak Z., Zalewska E., Król, E., 2011. Occurrence, harmfulness and morphological structures of Colletotrichum gloeosporioides (Penz.) Sacc. (teleomorph: Glomerela cingulata (Stonen) Spauld et Schrenk). Acta Sci. Pol. Hortorum Cultus, 10 (1), 39–52.
Makkar R.S., Cameotra S.S., 2002. An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl. Microbiol. Biotechnol. 58 (3), 428–434.
Mari M., Guizzardi M., Brunelli M., Folchi A., 1996. Postharvest biological control of grey mould (Botrytis cinerea) on fresh-market tomatoes with Bacillus amyloliquefaciens. Crop Protection, 15 (3), 699–705.
Ongena M., Jacques P., 2007. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol., 16 (1), 115–125.
Ongena M., Jacques P., Toure Y., Destain J., Jabrane A., Thonart P., 2005. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl. Microbiol. Biotechnol., 69 (1), 29–38.
Ongena M., Jourdan, E., Adam K., Paquot M., Brans A., Joris B., Arpigny J.L., Thonart P., 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol., 9 (8), 1084–1090.
Paolis M.R., Lippi D., 2008. Use of metabolic and molecular methods for the identification of a Bacillus strain isolated from paper affected by foxing. Microbial. Res. 163 (1), 121–131.
Perez-Garcia A., Romero D., Vicente de A., 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opin. Biotechnol, 22 (1), 187–193.
Płaza, G., Gawior K., Jangid K., Wilk K., 2010. Characterization of surface active properties of Bacillus strains growing in brewery effluent, in: Pawłowski L., Dudzińska M.R., Pawłowski A. (Eds), Environmental Engineering III. London: Taylor and Francis Group, London.
Płaza G., Pacwa-Płociniczak M., Piotrowska-Seget Z., Jangid K., Wilk K., 2011. Agroindustrial wastes as unconventional substrates for growing of Bacillus strains and production of biosurfactants. Environ. Protect. Engineering, 37 (1), 63–71.
Poliwoda A., Krzosok E., Wieczorek P.P., Kafarski P., Płaza G., 2012. Isolation and characterization of potential biosurfactants produced by Bacillus strains growing on agroindustrial wastes. Environ. Eng. Managment. J., 11 (3), S80.
Spanu P.D., Abbott J.C., Amselem J., Burgis T.A., Soanes D.M., Stüber K., van Themaat E., Brown J.K.M., Butcher S.A., Gurr S.J., Lebrun M.H., Ridout C.J., Schulze-Lefert P., Talbot N.J., Ahmadinejad N., et al., 2010. Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism. Science, 15 (10), 1543–1546.
Suiko M.L., Sinkko H., Partanen L., Mattila-Sandholm T., Salkinoja-Salonen M., Raaska L., 2004. Description of heterotrophic bacteria occurring in paper mills and paper products. J. Appl. Microbiol., 97 (8), 1228–12235.
Toure Y., Ongena M., Jacques P., Guiro A., Thonart P., 2004. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J. Appl. Microbiol., 96 (7), 1151–1160.
Velmurugan N., Choi M.S., Han S.S., Lee Y.S., 2009. Evaluation of antagonistic activities of Bacillus subtilis and Bacillus licheniformis against wood-staining fungi: in vitro and in vivo experiments. J. Microbiol., 47 (2), 385–392.
Wu X.Y., Walker M.J., Hornitzky M., Chin J., 2006. Development of a group-specific PCR combined with ARDRA for the identification of Bacillus species of environmental significance. J. Microbiol. Methods, 64 (1), 107–119.
Yoshida S., Hiradate S., Tsukamoto T., Hatakeda K., Shirata A., 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91: 181–187.
Yu G., Sinclair J.B., Hartman G.L., Bertagnolli B.L., 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem., 34 (2), 955–963.
Zhao Z., Wang Q., Wang K., Brian K., Liu C.H., Gu Y., 2010. Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its antifungal components. Biores. Technol. 101 (1), 292–297.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.