Skip to main navigation menu Skip to main content Skip to site footer

Vol. 10 No. 4 (2011)

Articles

INFLUENCE OF IODINE FERTILIZATION AND SOIL APPLICATION OF SUCROSE ON THE EFFECTIVENESS OF IODINE BIOFORTIFICATION, YIELD, NITROGEN METABOLISM AND BIOLOGICAL QUALITY OF SPINACH

Submitted: January 13, 2021
Published: 2011-12-31

Abstract

Iodine biofortification of vegetables can become an alternative (to iodized salt) method of introducing this element into human diet. Development of agronomic rules concerning its application requires detailed evaluation of iodine influence on plant physiological and biological processes including mineral nutrition and quality of yield. The aim of the study was to determine the effect of iodine and soil application of sucrose on iodine biofortification and nutritional quality of spinach plants. In 2009–2010, a pot experiment was carried out with spinach Spinacia oleracea L. ‘Olbrzym Zimowy’ cv. cultivation on mineral soil. The research included diverse combinations with pre-sowing iodine fertilization (in the form of KI) and soil application of sucrose: 1) – control (without iodine fertilization and sucrose application), 2) – 1 mg I dm-3 of soil, 3) – 2 mg I dm-3 of soil, 4) – 1 mg I + 1 g sucrose dm-3 of soil and 5) – 2 mg I + 1 g sucrose dm-3 of soil. In all tested combinations with iodine fertilization as well as simultaneous application of iodine and sucrose a significant increase in iodine, N-total and soluble oxalate content was observed
along with reduced level of nitrate(V) and dry matter in spinach leaves (when compared to the control). The highest accumulation of iodine was noted in leaves of
plants treated with 2 mg I + 1 g sucrose dm-3. Simultaneous application of iodine and sucrose diminished free amino acid content in comparison to the control. Additional introduction of sucrose along with both iodine doses decreased nitrate(V) and N-total level in spinach plants. Soil fertilization with both doses of iodine (1 and 2 mg I dm-3 of soil) applied individually or together with sucrose did not significantly affect spinach yield and the level of nitrate(III), phenolic compounds and soluble sugars in plants as well as iodine content in soil after cultivation.

References

Blasco B., Rios J.J., Cervilla L.M, Sánchez-Rodríguez E., Rubio-Wilhelmi M.M., Rosales M.A., Ruiz J.M., Romero L., 2010. Photorespiration process and nitrogen metabolism in lettuce plants (Lactuca sativa L.): induced changes in response to iodine biofortification. J. Plant Growth Regul. 29, 477–486.
Borst-Pauwels, G.W.F.H., 1961. Iodine as a micronutrient for plants. Plant Soil 14 (4), 377–392.
Calmano W., Hong J., Förstner U., 1993. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Wat. Sci. Tech. 28 (8–9), 223–235.
Chuan M.C., Shu G.Y., Liu J.C., 1996. Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH.. Water Air Soil Poll. 90 (3–4), 543–556.
Dai J-L., Zhu Y-G., Huang Y-Z., Zhang M., Song J-L., 2006. Availability of iodide and iodate to spinach (Spinacia oleracea L.) in retention to total iodine in soil solution. Plant Soil 286, 301–308.
Dai J.L., Zhang M., Hu Q.H., Huang Y.Z., Wang R.Q., Zhu Y.G., 2009. Adsorption and desorption of iodine by various Chinese soils: II. Iodide and iodate. Geoderma 153, 130–135.
Fuge R., Johnson C.J., 1986. The geochemistry of iodine–a review. Environ. Geochem. Health 8 (2), 31–54.
Gonda K., Yamaguchi H., Maruo T., Shinohara Y., 2007. Effects of iodine on growth and iodine absorption of hydroponically grown tomato and spinach. Hort. Res. Japan 6 (2), 223–227.
Hageman R.H., Hodge E.S., McHargue J.S., 1942. Effect of potassium iodide on the ascorbic acid content and growth of tomato plants. Plant Physiol. 17, 465–472.
Hong C.-L., Weng H.-Z., Yan A.-L., Islam A.-U., 2009. The fate of exogenous iodine in pot soil cultivated with vegetables. Environ. Geochem. Health 31 (1), 99–108.
Hung C.-C., Wong G.T.F., Dunstan W.M., 2005 Iodate reduction activity in nitrate reductase extracts from marine phytoplankton. Bull. Mar. Sci. 76 (1), 61–72.
Kabata-Pendias, A., Mukherjee, A.B., 2007. Trace elements from soil to human. Springer-Verlag Berlin Heidelberg.
Kelliher F.M., Barbour M.M., Hunt J.E., 2005. Sucrose application, soil microbial respiration and evolved carbon dioxide isotope enrichment under contrasting land uses. Plant Soil 268, 233–242.
Komornicki T., Oleksynowa K., Tokaj J., Jakubiec J., 1991. Przewodnik do ćwiczeń z gleboznawstwa i geologii. Cz. II. Metody laboratoryjne analizy gleb. Skrypty AR w Krakowie, 140 pp.
Korenman S., 1973. Analiza fotometryczna. Wyd. Nauk.-Tech., Warszawa.
Ledwożyw I., Smoleń S., Strzetelski S., 2009. Wpływ sposobu biofortyfikacji jodem na wielkość oraz jakość plonu sałaty gruntowej (badania wstępne). Zesz. Nauk. UR w Krakowie, 2, 457–463.
Ledwożyw I., Kołton A., Smoleń S., Strzetelski P., 2010. Wpływ dokarmiania dolistnego sałaty gruntowej jodem na aktywność reduktazy azotanowej i azotynowej w liściach Zesz. Nauk. UR w Krakowie, 2, 505–510.
Mackowiak C.L., Grossl P.R., 1999. Iodate and iodine effects on iodine uptake and partitioning in rice (Oryza sativa L.) grown in solution culture. Plant and Soil 212, 135–143.
Mackowiak C.L., Grossl P.R., Cook K.L., 2005. Iodine toxicity in a plant-solution system with and without humic acid. Plant Soil 269, 141–150.
Muramatsu Y., Uchida S., Sriyotha P., Sriyotha K., 1990. Some considerations on the sorption and desorption phenomena of iodide and iodate on soil. Water Air Soil Pollut. 49, 125–138.
Muramatsu Y., Yoshida S., Uchida S., 1996. Iodine Desorption From Rice Paddy Soil. Water, Air Soil Poll. 86, 359–371.
Nowosielski O., 1988. Zasady w rozwoju strategii nawożenia w ogrodnictwie. PWRiL, Warszawa.
Persson J.Å., Wennerholm M., 1999. Poradnik mineralizacji Kjeldahla – przegląd metody klasycznej z ulepszeniami dokonanymi przez firmę FOSS TECATOR. Labconsult, Warszawa.
PN-EN 15111:2008. Artykuły żywnościowe – Oznaczanie pierwiastków śladowych – Oznaczanie zawartości jodu metodą ICP-MS (spektrometria masowa z plazmą wzbudzoną indukcyjnie). Polski Komitet Normalizacyjny.
PN-EN ISO 11732:2005 (U). Jakość wody – Oznaczanie azotu amonowego metodą analizy przepływowej (CFA i FIA) z detekcją spektrometryczną.
PN-EN ISO 13395:2001. Jakość wody – Oznaczanie azotu azotynowego i azotanowego oraz ich sumy metodą analizy przepływowej (CFA i FIA) z detekcją spektrofotometryczną.
Smith G.S., Middleton K.R., 1982. Effect of sodium iodide on growth and chemical composition of lucerne and ryegrass. Fert. Res. 3, 25–36.
Smoleń S., Sady W., 2011. Influence of soil application of iodine and sucrose on mineral composition of spinach plants. Acta Sci. Pol. Hortorum Cultus 10(3), 3–13.
Smoleń S., Sady W., Strzetelski P., Rożek S., Ledwożyw I., 2009. Wpływ nawożenia jodem i azotem na wielkość i jakość plonu marchwi. Ochr. Środ. Zas. Nat. 40, 286–292.
Smoleń S., Sady W., Wierzbińska J., 2010. The effect of plant biostimulation with ‘Pentakeep V’ and nitrogen fertilization on yield, nitrogen metabolism and quality of spinach. Acta Sci. Pol. Hortorum Cultus 9 (1), 25–36.
Stagnari F., Di Bitetto V., Pisante M., 2007. Effects of N fertilizers and rates on yield, safety and nutrients in processing spinach genotypem. Scientia Hort. 114, 225–233.
Strzetelski P., Smoleń S., Rożek S., Sady W., 2010. The effect of diverse iodine fertilization on nitrate accumulation and content of selected compounds in radish plants (Raphanus sativus L.). Acta Sci. Pol. Hort. Cult. 9 (2), 65–73.
Swain T., Hillis W.E., 1959. Phenolic constituents of Prunus domestica. I. Quantitative analysis of phenolic constituents. J. Sci. Food Agricult. 10, 63–71.
Tsunogai S., Sase T., 1969. Formation of iodide-iodine in the ocean. Deep-Sea Res. 16, 489–496.
White P.J., Broadley M.R., 2005. Biofortifying crops with essential mineral elements. Trends Plant Sci. 10 (12), 586–593.
White P.J., Broadley M.R., 2009. Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 182 (1), 49–84.
Wierzbicka E., 2004. Oznaczanie szczawianów rozpuszczalnych w wybranych używkach. [W:] A. Brzozowska (red.) Toksykologia żywności. Przewodnik do ćwiczeń. Wyd. SGGW, Warszawa.
Wong G.T.F., Hung C.C., 2001. Speciation of dissolved iodine: integrating nitrate uptake over time in the oceans. Continental Shelf Res. 21, 113–128.
Yamaguchi N., Nakano M., Tanida H., 2005. Transformation of iodine species in soil under upland field and submerged paddy field conditions. SPring-8 Res Front 2005.
http://www.spring8.or.jp/pdf/en/res_fro/05/112–113.pdf.
Yang X-E., Chen W-R., Feng Y., 2007. Improving human micronutrient nutrition through biofortification in the soil-plant system: China as a case study. Environ. Geochem. Heath. 29 (5), 413–28.
Yemm E.W., Wills A.J., 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57, 508–514.
Yoshida S., Muramatsu Y., Uchida S., 1992. Studies on the sorption of I- (iodide) and IO3 - (iodate) onto andosols. Water Air Soil Pollut. 63, 321–329.
Zhao F.-J., McGrath S.P. 2009. Biofortification and phytoremediation. Curr. Opin. Plant Biol. 12, 373–380.
Zhang Y., Lin X., Zhang Y., Zheng S.J., Du S., 2005. Effects of nitrogen levels and nitrate/ammonium ratios on oxalate concentrations of different forms in edible parts of spinach. J. Plant Nutr. 28, 2011–2025.
Zhu Y.-G., Huang Y.-Z., Hu Y., Liu Y.-X., 2003. Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations. Environ Int. 29, 33–37.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 52 53 54 55 56 57 58 59 60 61 > >> 

You may also start an advanced similarity search for this article.