Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 5 (2022)

Articles

Seed yield and weed infestation of pea (Pisum sativum L.), and soil properties in the systems of conventional and conservation agriculture

DOI: https://doi.org/10.24326/asphc.2022.5.12
Submitted: February 4, 2022
Published: 2022-10-28

Abstract

Seed yield and weed infestation of pea as well as soil properties were evaluated in the systems of conventional (TA) and conservation (CA) agriculture. In both agricultural systems, pea was grown in crop rotation: potato – winter wheat – pea – winter barley. Shallow ploughing (10–12 cm) after previous crop harvest and pre-winter ploughing (20–25 cm) were performed, whereas a pre-sowing cultivation set was deployed in the springtime in TA. In CA, glyphosate was applied after previous crop harvest, and post-harvest residues were left on the filed surface (4.5 t ha–1). A cultivation-sowing set was used in the springtime, and pea was sown at the beginning of April. The study demonstrated that the agricultural systems tested had no significant effect on pea seed yield. A higher number and air-dry weight of weeds, and a higher weed species number were demonstrated in TA than in CA. Also, a higher number and air-dry weight of weeds were recorded in 2020 than in the other study years. Contents of organic C and total N in the soil and the number of earthworms were higher in CA than in TA.

References

  1. Bàrberi, P., Bonari, E., Mazzoncini, M., García-Torres, L., Benites, J., Martínez-Vilela, A. (2001). Weed density and composition in winter wheat as influenced by tillage systems. Conservation agriculture, a worldwide challenge. In: Proceedings of the First World Congress on Conservation Agriculture, Madrid, Spain, pp. 451–455.
  2. Bilalis, D., Efthimiadis, P., Sidiras N. (2001). Effect of three tillage systems on weed flora in a 3-year rotation with four crops. J. Agron. Crop Sci., 186, 135–141. DOI: https://doi.org/10.1046/j.1439-037X.2001.00458.x
  3. Buhler, D.D., Kohler, K.A., Thompson, R.L. (2001). Weed seed bank dynamics during a five-year crop rotation. Weed Technol., 15, 170–176. DOI: https://doi.org/10.1614/0890-037X(2001)015[0170:WSBDDA]2.0.CO;2
  4. Byerlee, D., White, R. (2000). Agricultural systems intensification and diversification through food legumes: technological and policy options. In: Linking research and marketing opportunities for pulses in the 21st century, Knight R. (ed.). Current Plant Science and Biotechnology in Agriculture, 34. Springer, Dordrecht. DOI: https://doi.org/10.1007/978-94-011-4385-1_2
  5. Cardina, J., Sparrow, D.H. (1996). A comparison of methods to predict weed seedling populations from the soil seedbank. Weed Sci., 44, 46–51. http://dx.doi.org/10.1017/S004317450009 353X DOI: https://doi.org/10.1017/S004317450009353X
  6. Davis, A.S., Renner, K.A., Gross, K.L. (2005). Weed seedbank community shifts in a long-term cropping experiment. Weed Sci., 53, 296–306. http://dx.doi.org/10.1614/WS-04-182 DOI: https://doi.org/10.1614/WS-04-182
  7. De Vita, P., Di Paolo, E., Fecondo, G., Di Fonzo, N., Pisante, M. (2007). No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Till. Res. 92, 69–78. DOI: https://doi.org/10.1016/j.still.2006.01.012
  8. Döring, T.F., Brandt, M., Heß, J., Maria, R., Finckh, M.R., Saucke, H. (2005). Effects of straw mulch on soil nitrate dynamics, weeds, yield and soil erosion in organically grown potatoes. Field Crops Res., 94, 238–249. http://dx.doi.org/10.1016/j.fcr.2005.01.006 DOI: https://doi.org/10.1016/j.fcr.2005.01.006
  9. Faligowska, A., Kalembasa, S., Kalembasa, D., Panasiewicz, K., Szymańska, G., Ratajczak, K., Skrzypczak, G. (2022). The nitrogen fixation and yielding of pea in different soil tillage systems. Agronomy, 12, 352. https://doi.org/10.3390/agronomy12020352 DOI: https://doi.org/10.3390/agronomy12020352
  10. Feledyn-Szewczyk, B., Smagacz, J., Kwiatkowski, C.K., Harasim, E., Woźniak, A. (2020). Weed flora and soil seed bank composition as affected by tillage system in three-year crop rotation. Agriculture, 10, 186. http://dx.doi.org/10.3390/agriculture10050186 DOI: https://doi.org/10.3390/agriculture10050186
  11. Fracchiolla, M., Stellacci, A.M., Cazzato, E., Tedone, L., Alhajj Ali, S., De Mastro, G. (2018). Effects of conservative tillage and nitrogen management on weed seed bank after a seven-year durum wheat-faba bean rotation. Plants, 7, 82. http://dx.doi.org/10.3390/plants 7040082 DOI: https://doi.org/10.3390/plants7040082
  12. Fykse, H., Waernhus, K. (1999). Weed development in cereals under different growth conditions and control intensities. Acta Agric. Scand., sec. B, Soil Plant Sci., 49, 134–142. http://dx.doi.org/10.1080/09064719909362509 DOI: https://doi.org/10.1080/09064719908565560
  13. Gruber, S., Pekrun, C., Möhring, J., Claupein, W. (2012). Long-term yield and weed response to conservation and stubble tillage in SW Germany. Soil Till. Res., 121, 49–56. http://dx.doi.org/10.1016/j.still.2012.01.015 DOI: https://doi.org/10.1016/j.still.2012.01.015
  14. Gruber, S., Claupein, W. (2009). Effect of tillage intensity on weed infestation in organic farming. Soil Till. Res., 105, 104–111. http://dx.doi.org/10.1016/j.still.2009.06.001 DOI: https://doi.org/10.1016/j.still.2009.06.001
  15. Herridge, D.F., Peoples, M.B., Boddey, R.M. (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil, 311, 1–18. http://dx.doi.org/10.1007/s11104-008-9668-3 DOI: https://doi.org/10.1007/s11104-008-9668-3
  16. Hoffman, M.L., Owen, M.D., Buhler, D.D. (1998). Effects of crop and weed management on density and vertical distribution of weed seeds in soil. Agron. J., 90, 793–799. DOI: https://doi.org/10.2134/agronj1998.00021962009000060013xa
  17. IUSS Working Group WRB. (2015). World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
  18. Javůrek, M., Hůla, J., Vach, M., Kroulík, M. (2008). Impact of different soil tillage technologies on soil erosion effect mitigation. Sci. Agric. Bohem., 39, 218–223.
  19. Jones, C.A., Basch, G., Baylis, A.D., Bazzoni, D., Bigs, J., Bradbury, R.B., Chaney, K., Deeks, L.K., Field, R., Gomez, J.A., Jones, R.J.A., Jordan, V., Lane, M.C.G., Leake, A., Livermore, M., Owens, P.N., Ritz, K., Sturny, W.G., Thomas, F. (2006). Conservation agriculture in Europe: an approach to sustainable crop production by protecting soil and water? SOWAP, Jealott’s Hill, Bracknell, UK.
  20. Kertész, Á., Madarász, B., Bádonyi, K., Csepinszky, B., Mika, J. (2011). Conservation tillage for rational water management and soil conservation. Hung. Geogr. Bull., 60, 117–133.
  21. Kertész, Á., Madarász, B. (2014). Conservation Agriculture in Europe. Int. Soil Water Conserv. Res., 2, 91–96. http://dx.doi.org/10.1016/S2095-6339(15)30016-2 DOI: https://doi.org/10.1016/S2095-6339(15)30016-2
  22. Knight, S.M. (2004). Plough, minimal till or direct drill? Establishment method and production efficiency. In: HGCA Conference 2004. Managing Soil and Roots for Profitab. Production. London, Home Grown Cereals Authority.
  23. Li, C., Moore-Kucera, J., Lee, J., Corbin, A., Brodhagen, M., Miles, C., Inglis, D. (2014). Effects of biodegradable mulch on soil quality. Appl. Soil Ecol., 79, 59–69. http://dx.doi.org/10.1016/j.apsoil.2014.02.012 DOI: https://doi.org/10.1016/j.apsoil.2014.02.012
  24. López-Bellido, L., Fuentes, M., Castillo, J.E., López-Garrido, F.J., Fernández, E.J. (1996). Long-term tillage, crop rotation, and nitrogen fertilizer effects on wheat yield under rainfed Mediterranean conditions. Agron. J., 88, 783–791. http://dx.doi.org/10.2134/ agronj1996.00021962008800050016x DOI: https://doi.org/10.2134/agronj1996.00021962008800050016x
  25. Lu, J.C., Watkins, K.B., Teasdale, J.R., Abdul-Baki, A.A. (2000). Cover crops in sustainable food production. Food Rev. Int., 16, 121–157. http://dx.doi.org/10.1081/FRI-100100285 DOI: https://doi.org/10.1081/FRI-100100285
  26. Meena, R.S., Lal, R. (2018). Legumes and sustainable use of soils. In: Legumes for soil health and sustainable management, Meena, R., Das, A., Yadav, G., Lal, R. (eds.). Springer, Singapore. http://dx.doi.org/10.1007/978-981-13-0253-4_1 DOI: https://doi.org/10.1007/978-981-13-0253-4
  27. Meier, U. (ed.). (2001). Growth stages of mono- and dicotyledonous plants. Federal Biological Research Centre for Agriculture and Forestry. Available: https://www.politicheagricole.it/flex/AppData/WebLive/Agrometeo/MIEPFY800/BBCHengl2001.pdf
  28. Morris, N.L., Miller, P.C.H., Orson, J.H., Froud-Williams, R.J. (2010). The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment – a review. Soil Till. Res., 108, 1–15. http://dx.doi.org/ 10.1016/j.still.2010.03.004 DOI: https://doi.org/10.1016/j.still.2010.03.004
  29. Peigné, J., Ball, B.C., Roger-Estrade, J., David, C. (2007). Is conservation tillage suitable for organic farming? A review. Soil Use Manage. 23, 129–144. DOI: https://doi.org/10.1111/j.1475-2743.2006.00082.x
  30. Peoples, M.B., Brockwell, J., Herridge, D.F., Rochester, I.J., Alves, B.J.R., Urquiaga, S., Boddey, R.M., Dakora, F.D., Bhattarai, S., Maskey, S.L., Sampet, C., Rerkasem, B., Khans, D.F., Hauggaard-Nielsen, H., Jensen, B.S. (2009). The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis, 48, 1–17. http://dx.doi.org/10.1007/BF03179980 DOI: https://doi.org/10.1007/BF03179980
  31. Pranagal, J., Woźniak, A. (2021). 30 years of wheat monoculture and reduced tillage and physical condition of Rendzic Phaeozem. Agric. Water Manag., 243, 106408. http://dx.doi.org/10.1016/j.agwat.2020.106408 DOI: https://doi.org/10.1016/j.agwat.2020.106408
  32. Rasmussen, K.J. (1999). Impact of plough less soil tillage on yield and soil quality: a Scandinavian review. Soil Till. Res., 53, 3–14. DOI: https://doi.org/10.1016/S0167-1987(99)00072-0
  33. Siddique, K.H.M., Johansen, C., Turner, N.C., Jeuffory, M.E., Hashem, A., Saker, D., Gan, Y., Alghamdi, S.S. (2012). Innovations in agronomy for food legumes. A review. Agron. Sustain. Dev., 32, 45–64. http://dx.doi.org/10.1007/s13593-011-0021-5 DOI: https://doi.org/10.1007/s13593-011-0021-5
  34. Smith, P., Powlson, D.S., Glendining, M.J., Smith, J.U. (1998). Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming. Global Change Biol., 4, 679–685. http://dx.doi.org/10.1046/j.1365-2486.1998.00185.x DOI: https://doi.org/10.1046/j.1365-2486.1998.00185.x
  35. Soane, B.D., Ball, B.C., Arvidsson, J., Basch, G., Moreno, F., Roger-Estrade, J. (2012). No-till in northern, western and south-western Europe: a review of problems and opportunities for crop production and the environment. Soil Till. Res., 118, 66–87. http://dx.doi.org/10.1016/j.still.2011.10.015 DOI: https://doi.org/10.1016/j.still.2011.10.015
  36. Tørresen, K.S., Skuterud, R. (2002). Plant protection in spring cereal production with reduced tillage. IV. Changes in the weed flora and weed seedbank. Crop Prot., 21, 179–193. DOI: https://doi.org/10.1016/S0261-2194(01)00081-3
  37. Vanasse, A., Leroux, G.D. (2000). Floristic diversity, size and vertical distribution of the weed seedbank in ridge and conventional tillage systems. Weed Sci., 48, 454–460. http://dx.doi.org/10.1614/0043-1745(2000)048%5B0454:FDSAVD%5D2.0.CO;2 DOI: https://doi.org/10.1614/0043-1745(2000)048[0454:FDSAVD]2.0.CO;2
  38. Wang, X., Fan, J., Xing, Y., Xu, G., Wang, H., Deng, J., Wang, Y., Zhang, F., Li, P., Li, Z. (2019). Chapter three – the effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Adv. Agron., 153, 121–173. DOI: https://doi.org/10.1016/bs.agron.2018.08.003
  39. Woźniak, A. (2013). The yielding of pea (Pisum sativum L.) under different tillage conditions. Acta Sci. Pol. Hortorum Cultus, 12, 133–141.
  40. Woźniak, A. (2018). Effect of tillage system on the structure of weed infestation of winter wheat. Span. J. Agric. Res., 16, e1009. http://dx.doi.org/10.5424/sjar/2018164-12531 DOI: https://doi.org/10.5424/sjar/2018164-12531
  41. Woźniak, A., Rachoń, L. (2019). Effect of tillage systems on pea crop infestation with weeds. Arch. Agron. Soil Sci., 65, 877–885. http://dx.doi.org/10.1080/03650340.2018.1533956 DOI: https://doi.org/10.1080/03650340.2018.1533956
  42. Woźniak, A., Gawęda, D. (2019). Tillage management effects on pea yield and chemical composition of pea seeds. Acta Sci. Pol., Hortorum Cultus, 18(1), 151–160. http://dx.doi.org/10.24326/asphc.2019.1.15 DOI: https://doi.org/10.24326/asphc.2019.1.15
  43. Woźniak, A. (2021). Production efficiency of different crop rotations and tillage systems. Span. J. Agric. Res., 19 (4), e0907. http://doi.org/10.5424/sjar/2021194-17023 DOI: https://doi.org/10.5424/sjar/2021194-17023

Downloads

Download data is not yet available.

Similar Articles

<< < 11 12 13 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.