Skip to main navigation menu Skip to main content Skip to site footer

Vol. 19 No. 6 (2020)

Articles

HARNESSING THE POTENTIAL OF NOVEL BIOACTIVE COMPOUNDS PRODUCED BY ENDOPHYTIC Phoma spp. – BIOMEDICAL AND AGRICULTURAL APPLICATIONS

DOI: https://doi.org/10.24326/asphc.2020.6.3
Submitted: June 10, 2019
Published: 2020-12-31

Abstract

Endophytes are those inhabiting in plants without causing any apparent loss to the host plant. Phoma is a ubiquitously found genus of fungi in soil, water and air. Endophytic Phoma spp. are distributed with high specific diversity, those occur in plants and are mainly responsible for the production of a vast range of secondary metabolites. These secondary metabolites or the bioactive compounds have demonstrated a wide range of activity ranging from antibacterial, antifungal, antiviral, algicidal, cytotoxic, antitubercular and plant growth promoting, etc. Bioactive compounds are produced by Phoma herbarum, P. sorghina, P. exigua, P. macrostoma, P. medicaginis, P. betae, P. tropica and others. The present review emphasizes on different species of endophytic Phoma as novel source of bioactive compounds, and their applications in medicine and agriculture are documented.

References

  1. Alvin, A., Miller, K.I., Neilan, B.A. (2014). Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol. Res., 169, 483–495. DOI: 10.1016/j.micres.2013.12.009
  2. Arora, P., Wani, Z.A., Nalli, Y., Ali A., Hassan, S.R. (2016). Antimicrobial potential of thiodiketopiperazine derivatives produced by Phoma sp., an endophyte of Glycyrrhiza glabra Linn. Microb. Ecol., 72, 802–812. DOI: 10.1007/s00248-016-0805-x
  3. Aveskamp, M.M., Gruyter, J., de, Crous, P.W. (2008). Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal. Divers., 31, 1–18.
  4. Aveskamp, M.M., Gruyter, J., de, Woudenberg, J.H.C., Varkley, G.J.M., Crous, P.W. (2010). Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Stud. Mycol., 65, 1–60. DOI: 10.3114/sim.2010.65.01
  5. Balmas, V., Scherm, B., Ghignone, S., Salem, A.O.M., Cacciola, S.O., Migheli, Q. (2005). Characterization of Phoma tracheiphila by RAPD-PCR, microsatellite-primed PCR and ITS rDNA sequencing and development of specific primers for in planta PCR detection. European. J. Plant. Pathol., 111, 235–247.
  6. Bharathidasan, R., Panneerselvam, A. (2011). Isolation and identification of endophytic fungi from Avicennia marina in Ramanathapuram District, Karankadu, Tamilnadu, India. Eur. J. Exper. Biol., 1, 31–36.
  7. Bick, I.R.C., Rhee, C (1966). Anthraquinone pigments from Phoma foveata Foister. Biochem. J., 98(1), 112–126. DOI: 10.1042/bj0980112
  8. Boerema, G.H., Gruyter, J., de, Noordeloos, M.E., Hamers, M.E.C. (2004). Phoma identification manual. Differentiation of specific and infra-specific taxa in culture. CABI Publishing, Wallingford, UK.
  9. Borges, W.D.S., Pupo, M.T. (2006). Novel anthraquinone derivatives produced by Phoma sorghina, an endophyte found in association with the medicinal plant Tithonia diversifolia (Asteraceae). J. Braz. Chem. Soc., 17, 929–934. DOI: 10.1590/S0103-50532006000500017
  10. Carroll, G. (1988). Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology, 69, 2–9.
  11. Che, Y., Gloer, J.B., Wicklow, D.T. (2002). Phomadecalins A–D and Phomapentenone A: New Bioactive Metabolites from Phoma sp. NRRL 25697, a fungal colonist of Hypoxylon Stromata. J. Nat. Prod., 65, 399–402. DOI: 10.1021/np010519o
  12. Comby, M., Gacoin, M., Robineau, M., Rabenoelina, F., Ptas, S., Dupont, J., Profizi C., Baillieul, F. (2017). Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiol. Res., 202, 11–20. DOI: 10.1016/j.micres.2017.04.014
  13. De Bary, A. (1866). Holfmeister’s Handbook of Physiological Botany, vol. 2. Verlag von Wilhelm Engelmann, Leipzing.
  14. De Siqueira, V.M., Conti, R., Magali de Araújo, J., Souza-Motta, C.M. (2011). Endophytic fungi from the medicinal plant Lippia sidoides Cham. and their antimicrobial activity. Symbiosis, 53, 89–95. DOI: 10.1007/s13199-011-0113-7
  15. Eyberger, A.L., Dondapati, R., Porter, J.R. (2006). Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J. Nat. Prod., 69, 1121–1124.
  16. Garcia-Effron, G., Park, S., Perlin, D.S. (2009). Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints. Antimicrob. Agents Chemother., 53, 112–122. DOI: 10.1128/AAC.01162-08
  17. Ge, H.M., Song, Y.C., Shan, C.Y., Ye, Y.H., Tan, R.X. (2005). New and cytotoxic anthraquinones from Pleospora sp. IFB-E006, an endophytic fungus in Imperata cylindrical. Planta Med., 71, 1063–1065. DOI: 10.1055/s-2005-864190
  18. Gruyter, J., de, Woudenberg. J.H.C., Aveskamp. M.M., Verkley. G.J.M., Groenewald, J.Z., Crous. P.W. (2010). Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleuro. Mycologia, 102, 1066–1081. DOI: 10.3852/09-240
  19. Gruyter, J., de, Aveskamp, M.M., Woudenberg, J.H.C., Verkley, G.J.M., Groenewald, J.Z., Crous, P.W. (2009). Molecular phylogeny of Phoma and allied anamorph genera: Towards a reclassification of the Phoma complex. Mycol. Res., 113, 508–519. DOI: 10.1016/j.mycres.2009.01.002
  20. Gruyter, J., de, Woudenberg, J.H.C., Aveskamp, M.M., Verkley, G.J.M., Groenewald, J.Z., Crous, P.W. (2012). Redisposition of Phoma-like anamorphs in Pleosporales. Stud. Mycol., 75, 1–36. DOI: 10.3114/sim0004
  21. Gubiani, J.R., Wijeratne, K., Shi, E.M., Araujo, T., Elizabeth, E.A., Arnold, A., Chapman, E., Gunatilaka, A.A.L. (2017). An epigenetic modifier induces production of (10’S)-verruculide B, an inhibitor of protein tyrosine phosphatases by Phoma sp. nov. LG0217, a fungal endophyte of Parkinsonia microphylla. Bioorg. Med. Chem. DOI: 10.1016/j.bmc.2017.01.048
  22. Gupta, S., Kaul, S., Singh, B., Vishwakarma, R.A., Dhar, M.K. (2016). Production of Gentisyl Alcohol from Phoma herbarum endophytic in Curcuma longa L. and its antagonistic activity towards leaf spot pathogen Colletotrichum gloeosporioides. Appl. Biochem. Biotechnol., 180, 1093–1109.
  23. Hamayun, M., Khan, S.A., Khan, A.L., Rehman, G., Sohn, E.Y., Shah, A.A., Kim, S.K., Joo, G.J., Lee, I.J. (2009). Phoma herbarum as a new gibberellin-producing and plant growth-promoting fungus. J. Microbiol. Biotechnol., 19, 1244–1249. DOI: 10.4014/jmb.0901.0030
  24. Hamzah, T., Lee S., Hidayat, A., Terhem, R., Faridah-Hanum, I., Mohamed, R. (2018). Diversity and characterization of endophytic fungi isolated from the tropical mangrove species, Rhizophora mucronata, and identification of potential antagonists against the soil-borne fungus, Fusarium solani. Front. Microbiol., 9, 1707. DOI: 10.3389/fmicb.2018.01707
  25. Hensens, O.D., Ondeyka, J.G., Dombrowski, A.W., Ostlind, D.A., Zink D.L. (1999). Isolation and structure of nodulisporic acid A1 and A2, novel insecticides from a Nodulisporium sp. Tetrahedron. Lett., 40, 5455–5458. DOI: 10.1016/S0040-4039(99)01064-3
  26. Hirsh, G.U., Braun, U. (1992). Communities of parasitic microfungi. In: Handbook of vegetation science: Fungi in vegetation science, Vol. 19, Winterhoff, W. (ed.). Kluwer Academic, Dordrecht, Netherlands, 225–250.
  27. Hoffman, A.M., Mayer, S.G., Strobel, G.A., Hess W.M., Sovocool, W., Grange, A.H., Kelley-Swift, E.G. (2008). Purification, identification and activity of phomodione, afurandione from an endophytic Phoma species. Phytochemistry, 69, 1049–1056. DOI: 10.1016/j.phytochem.2007.10.031
  28. Hosseinzadeh, H., Nassiri-Asl, M. (2015). Pharmacological effects of Glycyrrhiza spp. and its bioactive constituents: update and review. Phytother. Res., 29, 1868–1886. DOI: 10.1002/ptr.5487
  29. Huang, S., Xu, J., Li, F., Zhou, D., Xu, L., Li, C. (2017). Identification and antifungal activity of metabolites from the mangrove fungus Phoma sp. L28. Chem. Nat. Comp., 53, 237–240. DOI: 10.1007/s10600-017-1961-z
  30. Hynes, R.K. (2018). Phoma macrostoma: as a broad spectrum bioherbicide for turfgrass and agricultural applications. CAB Rev., 13, 005. DOI: 10.1079/PAVSNNR201813005
  31. Jacob, M., Bhat, D.J. (2000). Two new endophytic conidial fungi from India. Cryptogam. Mycol., 21, 81–88. DOI: 10.1016/S0181-1584(00)00116-0
  32. Karsten, K., Umar, F., Ulrich, F., Barbara, S., Siegfried, D., Gennaro, P., Piero, S., Sándor, A., Tibor, K. (2007). Secondary metabolites isolated from an endophytic Phoma sp. absolute configuration of tetrahydropyrenophorol using the solid-state TDDFT CD methodology. Eur. J. Org. Chem., 19, 3206–3211. DOI: 10.1002/ejoc.200601128
  33. Kedar, A., Rathod, D., Yadav, A., Agarkar, G., Rai, M. (2014). Endophytic Phoma sp. isolated from medicinal plants promote the growth of Zea mays. Nusantara Biosci., 6, 132–139. DOI: 10.13057/nusbiosci/n060205
  34. Khan, A., Gilani, S., Waqas, M., Al-Hosni, K., Al-Khiziri, S., Kim, Y., Ali, L., Kang, S., Asaf, S., Shahzad, R., Hussain, J., Lee I., Al-Harrasi, A. (2017). Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress. J. Zhejiang Univ. Sci. B Biomed. Biotechnol., 18, 125–137. DOI: 10.1631/jzus.B1500271
  35. Khan, R., Shahzad, S., Choudhary, M.I., Khan, S.A., Ahmad, A. (2007). Biodiversity of the endophytic fungi isolated from Calotropis procera (Ait.) R. Br. Pak. J. Bot., 39, 2233–2239.
  36. Kiprono, P.C., Kaberia, F., Keriko, J.M., Karanja, J.N. (2000). The in vitro anti-fungal and anti-bacterial activities of beta-sitosterol from Senecio lyratus (Asteraceae). Z. Naturforsch. (C), 55, 485–488. DOI: 10.1515/znc-2000-5-629
  37. Kobayashi, D.Y., Palumbo, J.D. (2000). Bacterial endophytes and their effects on plants and uses in agriculture. In: Microbial Endophytes, Bacon, C.W, White, J.F (eds.). Marcel Dekker, New York, 199–236.
  38. Koch, C.A., Utkhede, R.S. (2004). Development of a multiplex classical polymerase chain reaction technique for detection of Didymella bryoniae in infected cucumber tissues and greenhouse air samples. Can. J. Plant. Pathol., 26, 291–298. DOI: 10.1080/07060660409507146
  39. Krohn, K., Farooq, U., Flörke, U., Schulz, B., Draeger, S., Pescitelli, G., Salvadori, P., Antus, S., Kurtán, T. (2007). Secondary metabolites isolated from an endophytic Phoma sp. – Absolute Configuration of Tetrahydropyrenophorol using the solid-state TDDFT CD methodology. Eur. J. Org. Chem., 3206–3211. DOI: 10.1002/ejoc.200601128
  40. Kumaran, R.S., Choi, Y.K., Lee, S., Jeon, H.J., Jung, H., Kim, H.J. (2014). Isolation of taxol, an anticancer drug produced by the endophytic fungus, Phoma betae. Afr. J. Biotechnol., 11, 950–960. DOI: 10.5897/AJB11.1937
  41. Kusari, S., Lamshӧft, M., Spiteller, M. (2009a). Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J. Appl. Microbiol., 107, 1019–1030. DOI: 10.1111/j.1365-2672.2009.04285.x
  42. Kusari S., Lamshӧft M., Zühlke S., Spiteller M., 2008. An endophytic fungus from Hypericum perforatum that produces hypericin. J. Nat. Prod., 71, 159–162. DOI: 10.1021/np070669k
  43. Kusari, S., Verma, V.C., Lamsho, ft M., Spiteller, M. (2012). An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J. Microbiol. Biotechnol., 28, 1287–1294. DOI: 10.1007/s11274-011-0876-2
  44. Kusari, S., Zühlke, S., Kosuth, J., Čellárová, E., Spiteller, M. (2009b). Light independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J. Nat. Prod., 72, 1825–1835. DOI: 10.1021/np9002977
  45. Kusari, S., Zühlke, S., Spiteller, M. (2009c). An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J. Nat. Prod., 72, 2–7. DOI: 10.1021/np800455b
  46. Larran, S., Simón, M.R., Moreno, M.V., Siurana, M.P.S., Perelló, A. (2016). Endophytes from wheat as biocontrol agents against tan spot disease. Biol. Control., 92, 17–23. DOI: 10.1016/j.biocontrol.2015.09.002
  47. Lasala, J.M., Stone, G.W., Dawkins, K.D., (2006). An Overview of the TAXUS® Express®, Paclitaxel‐Eluting Stent Clinical Trial Program. J. Interv. Cardiol., 19(5), 422–431. DOI: 10.1111/j.1540-8183.2006.00183.x
  48. Liu, S.S., Jiang, J.X., Huang, R., Wang, Y.T., Jiang, B.G., Zheng, K.X., Wu, S.H. (2019). A new antiviral 14-nordrimane sesquiterpenoid from an endophytic fungus Phoma sp. Phytochem. Lett., 29, 75–78. DOI: 10.1016/j.phytol.2018.11.005
  49. Marler, M., Pedersen, D., Mitchell-Olds, T., Callaway, R.M. (1999). A polymerase chain reaction method for detecting dwarf mistletoe infection in Douglas-fir and western larch. Can. J. For. Res., 29, 1317–1321. DOI: 10.1139/x99-092
  50. Martinez-Klimova, E., Rodríguez-Peña, K., Sánchez, S. (2017). Endophytes as sources of antibiotics. Biochem. Pharmacol., 134, 1–17. DOI: 10.1016/j.bcp.2016.10.010
  51. Melmed, R.N., Ishai-Michaeli, R., Yagen, B. (1985). Differential inhibition by T-2 toxin of total protein, DNA and isoprenoid synthesis in the culture macrophage cell line J744. Biochem. Pharmacol., 34, 2809–2812. DOI: 10.1016/0006-2952(85)90583-0
  52. Michael, A.C., Mierzwa, R., King ,A., Loebenverg, D., Bishop, W.R., Puar, M., Patel, M., Coval, S.J., Hershenhorn, J., Strobel, G.A. (1992). Usnic acid amide, a phytotoxin and antifungal agent from Cercosporidium henningsii. Phytochemistry, 31, 2999–3001. DOI: 10.1016/0031-9422(92)83434-Z
  53. Monte, E., Bridge, P.D., Sutton, B.C. (1991). An integrated approach to Phoma systematics. Mycopathologia, 115, 89–103.
  54. Moster, L., Crous P.W., Petrini O. (2000). Endophytic fungi associated with shoots and leaves of Vitis vinifera, and specific reference to the Phomopsis viticola complex. Sydowia, 52, 46–58.
  55. Muhammad, H., Khan, S.A., Khan, A.L., Rehman, G., Sohn, E.Y., Shah, A.A., Kim, S.K., Joo, G.J., Lee, I.J. (2009). Phoma herbarum as a new gibberellin-producing and plant growth-promoting fungus. J. Microbiol. Biotechnol., 19, 1244–1249. DOI: 10.4014/jmb.0901.0030
  56. Nisa, H., Kamili, A.N., Nawchoo, A.I., Shafi, S., Shameem, N., Bandh, S.A. (2015). Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. Microb. Pathog., DOI: 10.1016/j.micpath.2015.04.001
  57. Oberlie, N.H., Kroll, D.J. (2004). Camptothecin and taxol: historic achievements in natural products research. J. Nat. Prod., 67, 129–35. DOI: 10.1021/np030498t
  58. Osterhage, C., Konig, G.M., Jones, P.G., Wright, A.D. (2002). 5-Hydroxyramulosin, a new natural product produced by Phoma tropica, a marine derived fungus derived from alg Fucus spiralis. Plant. Med., 68, 1052–1054. DOI: 10.1055/s-2002-35670
  59. Osterhage, C., Schwibibble, M., Konig, G.M., Wright, A.D. (2000). Differences between marine amnd terrestrial Phoma species as determined by HPLC-DAD and HPLC-MS. Phytochem. Anal., 11, 288–294. DOI: 10.1002/1099-1565(200009/10)11:5%3C288::AID-PCA528%3E3.0.CO;2-G
  60. Paynter, Q., Waipara, N., Peterson, P., Hona, S., Fowler, S., Gianotti, A., Wilkie, P. (2006). The impact of two introduced biocontrol agents, Phytomyza vitalbae and Phoma clematidina, on Clematis vitalba in New Zealand. Biol. Control., 36, 350–357. DOI: 10.1016/j.biocontrol.2005.09.011
  61. Petrini, O. (1991). Fungal endophytes of tree leaves. In: Microbial Ecology of Leaves, Andrews, J., Hirano, S. (eds.), 179–197. Springer Verlag, New York–Berlin–Heidelberg–London–Paris–Tokyo–Hong Kong–Barcelona–Budapest.
  62. Pharamat, T., Palaga, T., Piapukiew, J., Whalley, A.J.S., Sihanonth, P. (2013). Antimicrobial and anticancer activities of endophytic fungi from Mitrajyna javanica Koord and Val. Afr. J. Microbiol. Res., 7, 5565–5572. DOI: 10.5897/AJMR12.2352
  63. Puri, S.C., Verma, V., Amna, T., Qazi, G.N., Spiteller, M. (2005). An endophytic fungus from Nothapodytes foetida that produces camptothecin. J. Nat. Prod., 68, 1717–1719. DOI: 10.1021/np0502802
  64. Qin, S., Hussaina, H., Schulz, B., Draeger, S., Krohn, K. (2010). Two New Metabolites, Epoxydine A and B, from Phoma sp., Helv. Chim. Acta, 93(1), 19–174. DOI: 10.1002/hlca.200900199
  65. Rai, M., Agarkar, G. (2015). Plant-fungal interactions: What triggers the fungi to switch among lifestyles? Crit. Rev. Microbiol., 42, 428–438. DOI: 10.3109/1040841X.2014.958052
  66. Rai, M., Gade, A., Zimowska, B., Ingle, A.P., Ingle, P. (2018). Marine-derived Phoma-the gold mine of bioactive compounds. Appl. Microbiol. Biotechnol., 102 , 9053–9066. DOI: 10.1007/s00253-018-9329-2
  67. Rai, M., Rathod, D., Agarkar, G., Dar, M., Brestic, M., Marostica Junior, M.R. (2014). Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture. Symbiosis, 62, 63–79. DOI: 10.1007/s13199-014-0273-3
  68. Rai, M., Rathod, D., Ingle, A., Proksch, P., Kon, K., (2013). Biocidal Metabolites from Endophytes Occurring in Medicinal Plants. In: Natural Antioxidants and Biocides from Wild Medicinal Plants, Cespedes, C., Sampietro, D., Rai, M., Seigler, D. (eds.). CABI, U.K., 56–64.
  69. Rebecca, I.N.A., Kumar, D.J.M., Srimathi, S., Muthumary, J., Kalaichelvan, P.T. (2011). Isolation of Phoma species from Aloe vera: an endophyte and screening the fungus for taxol production. World. J. Sci. Technol., 1, 23–31.
  70. Saikkonen, K., Faeth, S.H., Helander, M., Sullivan, T.J. (1998). Fungal endophytes: a continuum of interactions with host plants. Annu. Rev. Ecol. Syst., 29, 319–343.
  71. Santiago, C., Fitchett, C., Munro, M.H.G., Jalil, J., Santhanam, J. (2012). Cytotoxic and antifungal activities of 5-hydroxyramulosin, a compound produced by an endophytic fungus isolated from Cinnamomum mollisimum. Evid.-Based Complement. Altern. Med., Article ID 689310. DOI: 10.1155/2012/689310
  72. Schardl, C.L., Liu, J.S., White, J.F., Finkel, R.A., An Z., Siegel, M.R. (1991). Molecular phylogenetic relationships of nonpathogenic grass mycosymbionts and clavicipitaceous plant pathogens. Plant. Syst. Evol., 178, 27–41.
  73. Schulz, B., Boyle, C. (2005). The endophyte continuum. Mycol. Res., 109, 661–689. PMID: 16080390.
  74. Shweta, S., Zuehlke, S., Ramesha, B.T., Priti, V., Mohana Kumar, P., Ravikanth, G., Spiteller, M., Vasudeva, R., Uma Shaanker, R. (2010). Endophytic fungal strains of Fusarium solani, from Apodytes dimidiate E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry, 71, 117–122. DOI: 10.1016/j.phytochem.2009.09.030
  75. Stewart-Wade, S.M., Boland, G.J. (2005). Oil emulsions increase efficacy of Phoma herbarum to control dandelion but are phytotoxic. Biocontrol. Sci. Technol., 15, 671–681. DOI: 10.1080/09583150500136873
  76. Stierle, A., Strobel, G.A., Stierle, D. (1993). Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 260, 214–216.
  77. Stone, J.K., Bacon, C.W., White, J.F. (2000). An overview of endophytic microbes:endophytism defined. In: Microbial Endophytes, Bacon, C.W, White, J.F (eds.). Marcel Dekker, New York, pp. 3–30.
  78. Strobel, G., Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev., 67, 491–502.
  79. Strobel, G., Daisy, B., Castillo, U., Harper, J. (2004). Natural products from endophytic microorganisms. J. Nat. Prod., 67, 257–68.
  80. Strobel, G., Knighton, B., Kluck, K., Ren, Y., Livinghouse, T., Griffen, M., Spakowicz, D., Sears, J. (2008). The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum. Microbiology, 154, 3319–3328. DOI: 10.1099/mic.0.30824-0
  81. Strobel, G., Singh, S.K., Riyaz-Ul-Hassan, S., Mitchell, A.M., Geary, B., Sears, J. (2011). An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol. Lett. 320, 87–94. DOI: 10.1111/j.1574-6968.2011.02297.x
  82. Strobel, G.A. (2002). Microbial gifts from the rainforest. Can. J. Phytopathol. 24, 14–20.
  83. Suryanarayanan, T.S., Murali, T.S., Venkatesan, G. (2002). Occurrence and distribution of fungal endophytes in tropical forests across a rainfall gradient. Can. J. Bot., 80, 818–826. DOI: 10.1139/b02-069
  84. Tijerino, A., Cardoza, R.E., Moraga, J., Malmierca, M.G., Vicente, F., Aleu, J., Collado, I.G., Gutiérrez, S., Monte, E., Hermos, R. (2011). Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal. Genet. Biol., 48, 285–296. DOI: 10.1016/j.fgb.2010.11.012
  85. Tooker, J.F., Hanks, L.M. (2004). Trophic position of the endophytic beetle, Mordellistena aethiops Smith (Coleoptera: Mordellidae). Environ. Entomol., 33, 291–296. DOI: 10.1603/0046-225X-33.2.291
  86. Trémouillaux-Guiller, J., Rohr, T., Rohr, R., Huss, V.A.R. (2002). Discovery of an endophytic alga in Ginkgo biloba. Am. J. Bot., 89, 727–733.
  87. Vieira, M.L., Hughes, A.F., Gil, V.B., Vaz, A.B., Alves, T.M., Zani, C.L., Rosa, C.A., Rosa, L.H. (2012). Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell. (Solanaceae). Can. J. Microbiol., 58, 54–66. DOI: 10.1139/W11-105
  88. Vries, S., de, Dahlen, J.K., von, Schnake, A., Ginschel, S., Schulz, B., Rose, L.E. (2018). Broad-spectrum inhibition of Phytophthora infestans by fungal endophytes. FEMS Microbiol. Ecol., 94(4), fiy 037. DOI: 10.1093/femsec/fiy037
  89. Wang, L.W., Xu, B.G., Wang, J.Y., Su, Z.Z., Lin, F.C., Zhang, C.L., Kubicek, C.P. (2012). Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. Appl. Microbiol. Biotechnol., 93, 1231–1239. DOI: 10.1007/s00253-011-3472-3
  90. Waqas, M., Khan, A.L., Hamayun, M., Kamran, M., Kang, S.M., Kim, Y.H., Lee, I.J. (2012a). Assessment of endophytic fungi cultural filtrate on soybean seed germination. Afr. J. Biotechnol., 11, 15135–15143.
  91. Waqas, M., Khan, A.L., Kamran, M., Hamayun, M., Kang, S.M., Kim, Y.H., Lee, I.J. (2012b). Endophytic fungi produce gibberellins and indole-acetic acid and promotes host-plant growth during stress. Molecules, 17, 10754–10773. DOI: 10.3390/molecules170910754
  92. Weber, R.W.S., Stenger, E., Meffert, A., Hahn, M. (2004). Brefeldin A production by Phoma medicaginis in dead pre-colonized plant tissue: a strategy for habitat conquest? Mycol. Res., 108, 662–671. DOI: 10.1017/S0953756204000243
  93. Wilson, D. (1995). Endophyte – the evolution of the term, a clarification of its use and definition. Oikos, 73, 274–276.
  94. Wink, M. (2008). Plant secondary metabolism: diversity, function and its evolution. Nat. Prod. Commun., 3, 1205–1216.
  95. Wijeratne, E.K., He, H., Franzblau, S.G., Hoffman, A.M., Gunatilaka, A.L. (2013). Phomapyrrolidones A–C, antitubercular alkaloids from the endophytic fungus Phoma sp. NRRL 46751. J. Nat. Prod., 76(10), 1860–1865. DOI: 10.1021/np400391p
  96. Xia, X., Kim, S., Bang, S., Lee, H.J., Liu, C., Park, C.I., Shim, S.H. (2014). Barceloneic acid C, a new polyketide from an endophytic fungus Phoma sp. JS752 and its antibacterial activities. J. Antibiot., 1–3. DOI: 10.1038/ja.2014.116
  97. Yang, X., Strobel, G., Stierle, A., Hess, W.M., Lee, J., Clardy, J. (1994). A fungal endophyte-tree relationship: Phoma sp. in Taxus wallachiana. Plant Sci., 102, 1–9. DOI: 10.1016/0168-9452(94)90017-5
  98. Yarden, O., Ainsworth, T.D., Roff, G., Leggat, W., Fine, M., Hoegh-Guldberg, O. (2007). Increased prefalence of ubiquitous ascomycetes in an acropoid coral (Acropora formosa) exibiting symptoms of brown band syndrome and skeletal eroding band disease. Appl. Env. Microbiol., 73, 2755–2757. DOI: 10.1128/AEM.02738-06
  99. Zaiyou, J., Li, M., Xiqiao, H. (2017). An endophytic fungus efficiently producing paclitaxel isolated from Taxus wallichiana var. mairei. Medicine, 96, 27(e7406). DOI: 10.1097/MD.0000000000007406
  100. Zakaria, L., Aziz, W.N.W. (2018). Molecular identification of endophytic fungi from banana leaves (Musa spp.). Tropical. Life. Sci. Res., 29, 201–211. DOI: 10.21315/tlsr2018.29.2.14
  101. Zhang, L., Wang, S.Q., Li X.J., Zhang, A.L., Zhang, Q., Gao, J.M. (2012). New insight into the stereochemistry of botryosphaeridione from a Phoma endophyte. J. Mol. Struct., 1016, 72–75. DOI: 10.1016/j.molstruc.2012.02.041
  102. Zhang, W., Krohn, K., Egold, H., Draeger, S., Schulz, B. (2008). Diversity of antimicrobial pyrenophorol derivatives from an endophytic fungus, Phoma sp. Eur. J. Organic. Chem., 25, 4320–4328. DOI: 10.1002/ejoc.200800404
  103. Zhao, S., Shamoun, S.F. (2006). Effects of cultre media, temperature, pH, and light on growth, sporulation, germination, and bioherbicidal efficacy of Phoma exigua, a potential biological control agent for salal (Gaultheria shallon). Biocontrol. Sci. Technol., 16, 1043–1055. DOI: 10.1080/09583150600828643
  104. Zhou, L., Bailey, K.L., Derby, J. (2004). Plant colonization and environmental fate of the biocontrol fungus Phoma macrostoma. Biol. Control., 30, 634–644. DOI: 10.1016/j.biocontrol.2004.03.002

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 18 19 20 21 22 23 24 25 26 27 > >> 

You may also start an advanced similarity search for this article.