Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 18 Nr 1 (2019)

Artykuły

MYCORRHIZAL INOCULATION AND PHOSPHORUS FERTILIZERS TO IMPROVE ONION PRODUCTIVITY IN SALINE SOIL

DOI: https://doi.org/10.24326/asphc.2019.1.6
Przesłane: 19 lutego 2019
Opublikowane: 2019-02-19

Abstrakt

This study investigated arbuscular mycorrhizal fungi (AMF) inoculation and phosphorus fertilizer on growth, productivity and quality of onion grown under saline soil conditions. The experiment was conducted in the Experimental Farm of Desert Research Center, Ras Sudr, South Sinai Governorate, Egypt. Egyptian local onion cultivar “Giza 20” was selected. Treatments were: two arbuscular mycorrhizal fungi (AMF) inoculation treatments [without inoculation (–AMF) and with mycorrhizal inoculation (+AMF)] and four phosphorus supplied treatments (0, 48, 96 and 144 kg P2O5 ha–1). Mycorrhizal inoculation and phosphorus addition affected the plant growth, bulb yield and quality. Morphological traits of plant (height, leaf number, fresh and dry weight), neck diameter, bulb characters (diameter and weight), total soluble sugars (TSS), protein, P content increased, while proline content decreased due to the inoculation of AMF and phosphorus application. Onion inoculated by AMF combined with 96 or 144 kg P2O5 ha–1 gave the highest productivity under saline conditions.

Bibliografia

  1. Abdel Latef, A.A.H., Chaoxing, H. (2011). Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci. Hortic., 127, 228–233.
  2. Abdullahi, R., Sheriff, H.H. (2013). Effect of arbuscular mycorrhizal fungi and chemical fertilizer on growth and shoot nutrients content of onion under field condition in northern Sudan savanna of Nigeria. J. Agric. Vet. Sci., 3(5), 85–90.
  3. Al-Karaki, G.N. (2000). Growth and mineral acquisition by mycorrhizal tomato grown under salt stress. Mycorrhiza, 10, 51–54.
  4. Al-Karaki, G.N., Clark, R.B. (1998). Growth, mineral acquisition and water use by mycorrhizal wheat grown under water stress. J. Plant Nutr., 21, 263–276.
  5. Amini, F., Ehsanpour, A. (2005). Soluble proteins, proline, carbohydrates and Na+/K+ changes in two tomato (Lycopersicon esculentum Mill.) cultivars under in vitro salt stress. Am. J. Biochem. Biotech., 1, 204–208.
  6. AOAC (1995). Official methods of analysis. 16th ed. Association of Official Agriculture Chemists, Washington, D.C.
  7. Bargaz, A., Nassar, R.M.A., Rady, M.M., Gaballah, M.S., Thompson, S.M., Brestic, M., Abdelhamid, M.T. (2016). Improved salinity tolerance by phosphorus fertilizer in two Phaseolus vulgaris recombinant inbred lines contrasting in their P‐efficiency. J. Agron. Crop Sci., 202(6), 497–507.
  8. Barker, A.V., Pilbeam, D.J. (2007). Handbook of plant nutrition. 2nd ed. CRC Press, New York.
  9. Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39, 205–207.
  10. Berruti, A., Lumini, E., Balestrini, R., Bianciotto, V. (2016). Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front. Microbiol., 6, 1559.
  11. Beltrano, J., Ruscitti, M., Arango, M.C., Ronco, M. (2013). Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. J. Soil Sci. Plant Nutr., 13(1), 123–141.
  12. Bolandnazar, S.A., Neyshabouri, M.R., Aliasgharzad, N., Chaparzadeh, N. (2007). Effects of mycorrhizal colonization on growth parameters of onion under different irrigation and soil conditions. Pak. J. Biol. Sci., 10(9), 1491–1495.
  13. Chawla, S., Jain, S., Jain, V. (2013). Salinity-induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryzasativa L.). J. Plant Biochem. Biotechnol., 1, 27–34.
  14. Cottenie, A., Verloo, M., Kiekns, L., Velghe, G., Comerlynek, R. (1982). Chemical analysis of plants and soil Laboratory of analytical and agrochemistry State University, Ghent, Belgium, 63 p.
  15. Daei-Hassani, B., Chaparzadeh, N., Sartibi, L., Abedini, M. (2016). Effects of phosphorus on antioxidant system in pepper cultivars under saline conditions. Iran. J. Plant Physiol., 7(1), 1935–1941.
  16. Duncan, D.B. (1955). Multiple range tests and multiple E test. Biometrics, 11, 1–42.
  17. El-Hamady, M.M. (2017). Growth and yield of onion alum cepa l. as influenced by nitrogen and phosphorus fertilizers levels. Can. J. Agric. Crops, 2(1), 34–41.
  18. Evelin, H., Kapoor, R., Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann. Bot., 104, 1263–1280.
  19. Garg, N., Manchanda, G. (2009). Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) Millsp. (pigeonpea). J. Agron. Crop Sci., 195, 110– 123.
  20. Gibson, T.S. (1988). Carbohydrate metabolism and phosphorus salinity interaction in wheat (Triticum aestivum L.). Plant Soil, 111(1), 25–35.
  21. Graham, J.H., Syversten, J.P. (1984). Influence of vesicular arbuscular mycorrhizal on the hydraulic conductivity of roots of two citrus rootstocks. New Phytol., 97, 277–284.
  22. Gulmezoglu, N., Daghan, H. (2017). The interactive effects of phosphorus and salt on growth, water potential and phosphorus uptake in green beans. Appl. Ecol. Environ. Res., 15(3), 1831–1842.
  23. Harinasut, P., Poonsopa, D., Roengmongkol, K., Charoensataporn, R. (2003). Salinity effects on antioxidant enzymes in mulberry cultivars. Sci. Asia, 29, 109–113.
  24. Hashem, A., Abd-Allah, E.F., Alqarawi, A.A., Wirth, S., Egamberdieva, D. (2016). Arbuscular mycorrhizal fungi alleviate salt stress in lupine (Lupinus termis Forsik) through modulation of antioxidant defense systems and physiological traits. Legume Res., 39(2), 198–207.
  25. He, Z., He, C., Zhang, Z., Zou, Z., Wang, H. (2007). Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf. B Biointerfaces, 59, 128–133.
  26. Indu, C., Sharma, Y.K. (2014). Influence of salinity and its interaction with phosphorus on chilli (Capsicum annumm L.). J. Chem. Biol. Phys. Sci. sec. B., 4(4), 3421–3428.
  27. Irigoyen, J.J., Emerich, D.W., Sanchez-Diaz, M. (1992). Water stress induced changes in the concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant, 8, 455–460.
  28. Johnston, A.E., Steen, I. (2000). Understanding phosphorus and its use in agriculture. European Fertilizer Manufacturers Association, Belgium, pp. 1–38.
  29. Kalifa, A. (1997). Salt stress and phosphorus absorption by potato plants cv. Russet Burbank [MSc. thesis]. Macdonald Campus of McGill University.
  30. Kaya, C., Ashraf, M., Sonmez, O., Aydemir, S., Tuna, L.A., Cullu, A.M. (2009). The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci. Hortic., 121, 1–6.
  31. Kowalska, I., Konieczny, A., Gastol, M., Sady, W., Hanus-Fajerska, E. (2015). Effect of mycorrhizal and phosphorus content in nutrient solution on the yield and nutritional status of tomato plants grown on rockwool or coconut coir. Agric. Food Sci, 24, 39–51.
  32. Kumar, A., Sharma, S., Mishra, S. (2010). Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation and mycorrhizal dependency of Jatropha curcas L. J. Plant Growth Regul., 29, 297–306.
  33. Miranda, R.S., Ruppenthal, V., Lopes, L.S., Vieira, C.F., Marques, V.B., Bezerra, M.A., Lacerda, C.F. (2013). Phosphorus fertilization improves soybean growth under salt stress. Int. J. Plant Anim. Sci., 1(2), 21–29.
  34. Misra, A.N., Latowski, D., Strzalka, K. (2006). The xanthophylls cycle activity in kidney bean and cabbage leaves under salinity stress. Russ. J. Plant Physiol., 53, 102–109.
  35. Mohamed, A.A., Eweda, W.E.E., Heggo, A.M., Hassan, E.A. (2014). Effect of dual inoculation with arbuscular mycorrhizal fungi and sulphur-oxidising bacteria on onion (Allium cepa L.) and maize (Zea mays L.) grown in sandy soil under green house conditions. Ann. Agric. Sci., 59(1), 109–118.
  36. Muddathir, A.M. (2004). Effect of vesicular arbuscular mycorrhizal (VAM) inoculation and phosphorus treatments on growth and yield of three onions (Allium cepa L.) cultivars [MSc. thesis]. Khartoum, Agriculture Faculty, Khartoum University.
  37. Nemec, S. (1981). Histochemical characterization of Glomus etunicatuminfection of Citrus limon roots. Can. J. Bot., 59, 609–617.
  38. Okusanya, O.T., Fawole, T. (1985). The possible role of phosphate in the salinity tolerance of Lavatera arborea. J. Ecol., 73(1), 317–322.
  39. Ortas, I. (2010). Effect of mycorrhiza application on plant growth and nutrient uptake in cucumber production under field conditions. Span. J. Agric. Res., 8(1), 116–122.
  40. Poss, J.A., Pond, E., Menge, J.A., Jarrell, W.M. (1985). Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate. Plant Soil, 88(3), 307–319.
  41. Rabie, G.H., Almadini, A.M. (2005). Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr. J. Biotechnol., 4, 210–222.
  42. Rafat, M., Sharifi, P. (2015). The effect of phosphorus on yield and yield components of green bean. J. Soil Nat., 8(1), 9–13.
  43. Ruiz-Lozano, J.M., Azcon, R., Gomez, M. (1996). Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol. Plant., 98, 767–772.
  44. Sari, N., Ortas, I., Yetisir, H. (2002). Effect of mycorrhizae inoculation on plant growth, yield and phosphorus uptake in garlic under field conditions. Commun. Soil Sci. Plant Anal., 33(13-14), 2189–2201.
  45. Shaheen, A.M., Omer, N., Fawzy, Z.F., Abd El-Aal, F.S. (2012). The effect of natural and/or chemical phosphorus fertilizer in combination with or without bio-phosphorus fertilizer on growth, yield and its quality of onion plants. Middle East J. Agric. Res., 1(1), 47–51.
  46. Shahriaripour, R., Tajabadi Pour, A., Mozaffari, V. (2011). Effects of salinity and soil phosphorus application on growth and chemical composition of pistachio seedlings. Comm. Soil Sci. Plant Anal., 42, 144.
  47. Sharma, N., Aggarwal, A., Yadav, K. (2017). Arbuscular mycorrhizal fungi enhance growth, physiological parameters and yield of salt stressed Phaseolus mungo (L.) Hepper. Eur. J. Environ. Sci., 7(1), 5–13.
  48. Sheng, M., Tang, M., Chan, H., Yang, B., Zhang, F., Huang, Y. (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18, 287–296.
  49. Shinde, S.K., Shinde, B.P. (2016). Consequence of arbuscular mycorrhiza on enhancement, growth and yield of onion (Allium cepa L.). Int. J. Life. Sci. Sci. Res., 2(2), 206–211.
  50. Shokri, S., Maadi, B. (2009). Effect of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress. J. Agron., 8, 79–83.
  51. Shubhra, Dayal, J., Goswami, C.L. (2003). Effect of phosphorus application on growth, chlorophyll and proline under water deficit in clusterbean (Cyamopsis tetragonoloba L. Taub). Indian J. Plant Physiol., 8(2), 150–154.
  52. Tanwar, A., Aggarwal, A., Kadian, N., Gupta, A. (2013). Arbuscular mycorrhizal inoculation and super phosphate application influence plant growth and yield of Capsicum annuum. J. Soil Sci. Plant Nutr., 13(1), 55–66.
  53. Villa-Astoria, M., Ellery, A.P., Catalan-Valencia, E.A., Ramming, M.D. (2003). Salinity and nitrogen rate effects on the growth and yield of Chile pepper plant. Soil Sci. Soc. Am. J., 67, 1781–1789.
  54. Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi-Shinozaki, K. (1997). Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol., 38, 1095–1102.
  55. Zhong Qun, H., Chao Xing, H., Zhibin, Z., Zhirong, Z., Huai Song, W. (2007). Changes in anti-oxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf. B Biointerfaces, 59, 128–133.

Downloads

Download data is not yet available.

Podobne artykuły

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.