Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 18 Nr 1 (2019)

Artykuły

EFFECTS OF PREHARVEST DEFICIT IRRIGATION TREATMENTS IN COMBINATION WITH REDUCED NITROGEN FERTILIZATION ON ORCHARD PERFORMANCE OF NECTARINE WITH EMPHASIS ON POSTHARVEST DISEASES AND PRUNING WEIGHTS

DOI: https://doi.org/10.24326/asphc.2019.1.21
Przesłane: 22 lutego 2019
Opublikowane: 2019-02-22

Abstrakt

Fruit production should be adapted to future scenarios that are frequently associated with scarce resources, especially freshwater and fertilizers. New biologically-based fruit production strategies, i.e. taking into account tree growth and water status, are required to optimize irrigation and fertilization under abiotic stress conditions. It was hypothesized that a moderate abiotic stress, here deficit irrigation with or without nitrogen deficit, in the preharvest period, could decrease postharvest losses due to diseases and pruning weights due to reduced vegetative growth, without sacrificing the yield and fruit quality. This study was conducted over two years using the same trees of ‘Moncante’ nectarine cultivar grown in a commercial orchard. Trees were assigned to three treatments: (1) full irrigation at 80% estimated crop evapotranspiration (ETc), (2) deficit irrigation, i.e. at 75% of full irrigation, and (3) deficit irrigation and deficit nitrogen, i.e. at 75% of full irrigation and 75% of usual N-fertilization adopted by the grower in this commercial orchard. Deficit irrigation alone and in combination with deficit nitrogen reduced postharvest diseases and pruning weights without significant yield losses. Our results suggest that ETc-based approaches of reduced water irrigation may be a sustainable way to decrease phytosanitary inputs and workload in the orchard while maintaining the orchard performance.

Bibliografia

  1. Allen, R.G., Pereira, L.S., Raes, D., Smith, M. (1998). Crop evapotranspiration. Guidelines for computing crop water requirements. Irrigation and drainage paper no. 56. FAO, Rome, Italy.
  2. Atay, E., Hucbourg, B., Drevet, A., Lauri, P.E. (2016). Growth responses to water stress and vapour pressure deficit in nectarine. Acta Hortic., 1139, 353–358. DOI:10.17660/ActaHortic.2016.1139.61.
  3. Atay, E., Hucbourg, B., Drevet, A., Lauri, P.E. (2017). Investigating effects of over-irrigation and deficit irrigation on yield and fruit quality in Pink LadyTM ‘Rosy Glow’ apple. Acta Sci. Pol. Hortorum Cultus, 16, 45–51. DOI:10.24326/asphc.2017.5.2.
  4. Bassi, D., Monet, R. (2008). Botany and taxonomy. In: The peach: botany, production and uses, Layne, D.R., Bassi, D. (eds.). CABI Publishing, Cambridge, 1–36.
  5. Crisosto, C.H., Johnson, R.S., DeJong, T., Day, K.R. (1997). Orchard factors affecting postharvest stone fruit quality. HortScience, 32, 820–823.
  6. Crisosto, C.H., Valero, D. (2008). Harvesting and postharvest handling of peaches for the fresh market. In: The peach: botany, production and uses, Layne, D.R., Bassi, D. (eds.). CABI Publishing, Cambridge, 575–596.
  7. Daane, K., Johnson, R., Michailides, T., Crisosto, C., Dlott, J., Ramirez, H., Yokota, G., Morgan, D. (1995). Excess nitrogen raises nectarine susceptibility to disease and insects. Calif. Agric., 49, 13–18. DOI:10.3733/ca.v049n04p13.
  8. FAO (2018). FAOSTAT database collections. Food and Agriculture Organization of the United Nations, Rome. Available: http://www.fao. org/faostat/en/#data/ [date of access: 25.05.2018].
  9. Grechi, I., Sauge, M.H., Sauphanor, B., Hilgert, N., Senoussi, R., Lescourret, F. (2008). How does winter pruning affect peach tree-Myzus persicae interactions? Entomol. Exp. Appl., 128, 369–379. DOI:10.1111/j.1570-7458.2008.00720.x.
  10. Ishida, M., Hirata, H., Kitajima, A., Sobajima, Y. (1990). Development and density of stomata on fruit surfaces during fruit growth in nectarine. Japan. Soc. Hortic. Sci., 58, 793–800. DOI:10.2503/jjshs.58.793.
  11. Jenkins, M. (2003). Prospects for biodiversity. Science, 302, 1175–1177. DOI:10.1126/science.1088666.
  12. Johnson, R.S. (2008). Nutrient and water requirements of peach trees. In: The peach: botany, production and uses, Layne, D.R., Bassi, D. (eds.). CABI Publishing, Cambridge, 303–331.
  13. Konarska, A. (2014). Morphological, histological and ultrastructural changes in fruit epidermis of apple Malus domestica cv. Ligol (Rosaceae) at fruit set, maturity and storage. Acta Biol. Cracoviensia Ser. Bot., 56, 35–48. DOI:10.2478/abcsb-2014-0019.
  14. Marsal, J., Girona, J. (1997). Relationship between leaf water potential and gas exchange activity at different phenological stages and fruit loads in peach trees. J. Amer. Soc. Hortic. Sci., 122, 415–421.
  15. Mditshwa, A., Magwaza, L.S., Tesfay, S.Z., Mbili, N. (2017). Postharvest quality and composition of organically and conventionally produced fruits: a review. Sci. Hortic., 216, 148–159. DOI:10.1016/j.scienta.2016.12.033.
  16. Mirás-Avalos, J.M., Pérez-Sarmiento, F., Alcobendas, R., Alarcón, J.J., Mounzer, O., Nicolás, E. (2017). Maximum daily trunk shrinkage for estimating water needs and scheduling regulated deficit irrigation in peach trees. Irrig. Sci., 35, 69–82. DOI:10.1007/s00271-016-0523-7.
  17. Naor, A. (2006). Irrigation scheduling and evaluation of tree water status in deciduous orchards. Hortic. Rev., 32, 111–116.
  18. Naor, A., Naschitz, S., Peres, M., Gal, Y. (2008). Responses of apple fruit size to tree water status and crop load. Tree Physiol., 28, 1255–1261. DOI:10.1093/treephys/28.8.125.
  19. Nguyen-The, C. (1991). Structure of epidermis wall, cuticle and cuticular microcracks in nectarine fruit. Agronomie, 11, 909–920.
  20. Perez-Pastor, A., Ruiz-Sanchez, M.C., Martinez, J.A., Nortes, P.A., Artes, F., Domingo, R. (2007). Effect of deficit irrigation on apricot fruit quality at harvest and during storage. J. Sci. Food Agric., 87, 2409–2415. DOI:10.1002/jsfa.2905.
  21. Rom, C. (1994). Fruit tree growth and development. In: Tree fruit nutrition: a comprehensive manual of deciduous tree fruit nutrient needs, Peterson, A.B., Stevens, R.G., Bramlage, W.J. (eds.). Good Fruit Grower, Yakima, WA, USA, 1–18.
  22. Sahabi, M., Hanafi, M.M., van Wijnen, A.J., Akmar, A.S.N., Azizi, P., Idris, A.S., Taheri, S., Foroughi, M. (2017). Profiling secondary metabolites of plant defence mechanisms and oil palm in response to Ganoderma boninense attack. Int. Biodeter. Biodegr., 122, 151–164. DOI:10.1016/j.ibiod.2017.04.016.
  23. Sharma, R.R., Singh, D., Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol. Control, 50, 205–221. DOI:10.1016/j.biocontrol.2009.05.001.
  24. Setop-Giraud Technologie (2018). ‘Pimprenelle’ instrument, Cavaillon, France. Available: www.setop.fr.
  25. Terry, L.A., Chope, G.A., Giné Bordonaba, J. (2007). Effect of water deficit irrigation and inoculation with Botrytis cinerea on strawberry (Fragaria × ananassa) fruit quality. J. Agric. Food Chem., 55, 10812–10819. DOI:10.1021/jf072101n.
  26. Urban, J., Ingwers, M.W., McGuire, M.A., Teskey, R.O. (2017). Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra. J. Exp. Bot., 68, 1757–1767. DOI:10.1093/jxb/erx052.
  27. Vendramin, E., Pea, G., Dondini, L., Pacheco, I., Dettori, M.T., Gazza, L., Scalabrin, S., Strozzi, F., Tartarini, S., Bassi, D., Verde, I., Rossini, L. (2014). A unique mutation in a MYB gene cosegregates with the nectarine phenotype in peach. PLoS One, 9, e90574. DOI:10.1371/journal.pone.0090574.
  28. Wisniewski, M., Droby, S., Norelli, J., Liu, J., Schena, L. (2016). Alternative management technologies for postharvest disease control: the journey from simplicity to complexity. Postharvest Biol. Technol., 122, 3–10. DOI:10.1016/j.postharvbio.2016.05.012.
  29. Zhang, X., Min, D., Li, F., Ji, N., Meng, D., Li, L. (2017). Synergistic effects of l-arginine and methyl salicylate on alleviating postharvest disease caused by Botrysis cinerea in tomato fruit. J. Agric. Food Chem., 65, 4890–4896. DOI:10.1021/acs.jafc.7b00395.

Downloads

Download data is not yet available.

Podobne artykuły

<< < 86 87 88 89 90 91 92 93 94 95 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.