Abstrakt
In case of sulphur shortage in the soil that element has a significant impact on yields of plants and their quality. The objective was to assess the impact of the work and the kind of sulphur content of Cu, Zn, Mn and Fe in the dry mass and uptake these elements by yield of dry mass of potato tuber. Experience in the field of potato head was in the years 2004–2006 by applying different kinds of sulphur (elemental and K2SO4) and dose (0, 25 and 50 kg·ha-1). Sulphur indeed affected the application to increase the yield of tubers. However, there has been an independent impact dose and kind of sulphur of tested characteristics. Only in the case of interaction of dose and kind of sulphur fertilization it was found that the highest yield was found when using 25 kg·ha-1 in the sulphate kind and 50 kg·ha-1 S in sulphate and elemental kind. The yield of dry mass was greatest when applied 25 kg·ha-1 in the sulphate kind. The content of Cu, Zn, Mn (except Fe) in the dry mass and uptake these elements by yield of dry mass of potato tuber was significantly determined by S fertilization. The highest content of Cu and Zn in the dry mass and
uptake these elements by yield of dry mass of tuber was after applying 50 kg S·ha-1 in elemental kind and on the control plots (without sulphur). Content and uptake of Mn by tuber was reduced by sulphur fertilization, and the contents and uptake of the Fe by tuber increased as a result of increasing doses of sulphur (although not confirmed that statistically). Elemental sulphur in dose 50 kg·ha-1 substantially reduced the pH value of the soil. It was a significant correlation between the pH value of the soil and the contents of Cu (negative), Zn (positive) and Mn (different values depending on years of research) in the dry mass and uptake these elements by yield of dry mass of potato tuber.
Bibliografia
Aulakh M.S., 2003. Crop responses to sulphur nutrition. [In:] Abrol YP, Ahmad A. (eds.), Sulphur in plants. Kluwer, Boston, 341–358.
Arredondo M., Nunez M.T., 2005. Iron and copper metabolism. Mol. Aspects Med., 26, 313–327.
Balik J., Kulhanek M., Černy J., Szakova J., Pavlikova D., Čermak P., 2009. Differences in soil sulfur fractions due to limitation of atmospheric deposition. Plant Soil Environ., 55(8), 344–352.
Cakmak I., 2002. Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant and Soil 247, 3–24.
Carew R., Khakbazan M., Mohr R., 2009. Cultivar Developments, Fertilizer Inputs, Environmental Conditions, and Yield Determination for Potatoes in Manitoba. Am. J. Pot Res. 86, 442–455.
Copenhagen Consensus., 2004. http://www.copenhagenconsensus.com.
Dar W.D., 2004. Macro-benefits from micronutrients for grey to green revolution in agriculture, IFA international symposium on micronutrients, 23–25 February 2004, New Delhi, India.
Dzwonkowski W., Szczepaniak J., Zalewski A., Chotkowski J., Rembeza J., Mieczkowski M., 2010. Rynek ziemniaka – stan i perspektywy. Wyd. IERiGŻ, ARR, MRiRW Warszawa.
El-Fayoumy M.E., El-Gamal A.M., 1998. Effects of sulphur application rates on nutrients availability, uptake and potato quality and yield in calcaerous soil. Egypt. J. Soil Sci. 38(1–4), 271–286.
Eppendorfer W.H., Eggum B.O., 1994. Sulphur deficiency of potatoes as reflected in chemical composition and in some measures of nutritive value. Norweg. J. Agr. Sci. Supplement. 15, 127–134.
Frossard E., Bucher M., Mächler F., Mozafar A., Hurrell R., 2000. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J. Sci. Food Agr. 80, 861–879.
Garcia-Mina J.M., Antolin M.C., Sanchez-Diaz M., 2004. Metal-humic complexes and plant micronutrient uptake: a study based on different plant species cultivated in diverse soil types. Plant and Soil 258, 57–68.
Gembarzewski H., 2000. Stan i tendencje zmian zawartości mikroskładników w glebach i roślinach z pól produkcyjnych w Polsce. Zesz. Probl. Post. Nauk Rol., 471, 171–179.
Graham R.D., Welch R.M., Bouis H.E., 2001. Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv. Agron. 70, 77–142.
Graham R.D., Welch R.M., Saunders D.A., Ortiz-Monasterio I., Bouis H.E., Bonierbale M., de Haan S., Burgos G., Thiele G., Liria R., et al., 2007. Nutritious subsistence food systems. Adv. Agron. 92, 1–74.
Grocholl J., Scheid L., 2002. Effect of sulfur on potato yield and quality. 15th Triennial Conf. EAPR. 14–19.07.2002. Hamburg. Abstracts, 240.
Grzebisz W., Haerdter R., 2006. Kizeryt – naturalny siarczan magnezu w produkcji roślinnej. Verlagsgesselschaft für Ackerbau mbH, Kassel, Niemcy.
Gugała M., Zarzecka K., 2008. Effect of weed control operations and tillage simplifications on iron content and uptake with potato tuber yield. J. Elementol. 13(3), 321–327.
Gupta A.P., 2005. Micronutrient status and fertilizer use scenario in India. J. Trace. Elem. Med. Biol. 18, 325–331.
Haneklaus S., Bloem E., Schnug E., 2003. The global sulphur cycle and its links to plant environment. [In:] Y.P. Abrol, A. Ahmad, (eds.), Sulphur in Plants, Kluwer Academic Publishers, Dordrecht, 1–28.
Hotz C., Brown K.H., 2004. Guest Editors, Assessment of the risk of zinc deficiency in populations and options for control, IZiNCG Technical Document 1. Food and Nutrition Bull. 25, Suppl. 2.
Jaggi R.C., Aulakh M.S., Sharma R., 2005. Impacts of elemental S applied under various temperature and moisture regimes on pH and available P in acidic, neutral and alkaline soils. Biol. Fertil. Soils 41, 52–58.
Kabata-Pendias A., 2004. Soil-plant transfer of trace elements-an environmental issue. Geoderma 122(2–4), 143–149.
Karam N.S., Ereifej K.I., Shibli R.A., AbuKudais H., Alkofahi A., Malkawi Y., 1998. Metal concentrations, growth, and yield of potato produced from in vitro plantlets or microtubers and grown in municipal solid-waste-amended substrates. J. Plant Nutrition 21(4), 725–739.
Klikocka H., Haneklaus S., Bloem E., Schnug E., 2005. Influence of sulfur fertilization on infection of potato tubers with Rhizoctonia solani and Streptomyces scabies. J. Plant Nutrition 28(05), 1–14.
Klikocka H., 2009a. The Influence of enriched NPK fertilization with S, Mg, and conteined of micronutrients liquid fertilizer Insol 7 on potato tubers yield (Solanum tuberosum L.) and infestation of tubers with Streptomyces scabies and Rhizoctonia solani. J. Element. 14(2), 271–288.
Klikocka H., 2009b. Sulfur supply in Polish agriculture. [w:] Sulfur Metabolism in Plants. Ed. Sirko A., De Kok L.J., Haneklaus S., Hawkesford M.J., Rennenberg H., Saito K., Schnug E., Stulen I. Backhuys Publishers, Leiden, The Netherlands, Margraf Publishers, Weikersheim, Germany, 45–48.
Klikocka H., 2010. Znaczenie siarki w biosferze i nawożeniu roślin. Przem. Chem. 89/7, 903–908.
Kucharzewski A., Nowak L., Dmowski Z., Markowski J., 2002. Zawartość metali ciężkich i siarki w ziemniakach na Dolnym Śląsku. Zesz. Probl. Post. Nauk Rol., 480, 491–497.
Kulczycki G., 2003. Wpływ nawożenia siarką elementarną na plon i skład chemiczny roślin oraz właściwości gleby. Nawozy Nawoż. 5, 4, 17, 151–159.
Kumar P., Pandev S.K., Singh B.P., Singh S.V., Kumar D., 2007. Influence of Source and Time of Potassium Application on Potato Growth, Yield, Economics and Crisp Quality. Potato Res. 50, 1–13.
Lalitha B.S., Sharanappa, Hunsigi G., 1997. Balance sheet of available potassium and sulphur as influenced by K and S application in seed tuber and true potato seed raised crop. J. Indian. Potato Ass. 24(3–4), 171–173.
Leszczyński W., 2000. Jakość ziemniaka konsumpcyjnego. Żywność 4 (25), 5–27.
Mishra K.K., Srivastava J.S., 2004/5. Soil amendments to control common scab of potato. Potato Res. 47, 101–109.
Nube M., Voortman R.L., 2006. Simultaneously addressing micronutrient deficiencies in soils, crops, animal and human nutrition: opportunities for higher yields and better health. Staff Working Paper WP-06-02. Stichting Onderzoek Wereldvoedselvoorziening van de Vrije Universiteit. Centre for World Food Studies. 1–41.
Nurzyńska-Wierdak R., 2009. Growth and yield of garden rocket (Eruca sativa Mill.) affected by nitrogen and potassium fertilization. Acta Sci. Pol., Hortorum Cultus 8(4), 23–33.
Pickny J., Grocholl J., 2002. Kartoffelschorf-Lässt sich der Befall durch eine Schwefeldüngung vermindern? Kartoffelbau. 3(53), 76–78
Reszel R., Reszel H., Pęcek J., Hadam B., 2004. Heavy metals and sulphur in the soils of farmlands in protected areas of the Podkarpacie region. Environ Prot Eng. 4, 113–121.
Rozporządzenie Ministra Zdrowia z dnia 30 kwietnia 2004 r. w sprawie maksymalnych poziomów zanieczyszczeń chemicznych i biologicznych w żywności. Dz.U. nr 120, poz. 1257.
Schnug E. (Ed.), 1998. Sulphur in Agroecosystems. Kluwer Academic Publishers. The Netherlands.
Scherer NW., 2001. Sulphur in crop production. Eur. J. Agron. 14, 81–111.
Singh J.P., Marwaha R.S., Srivastava O.P., 1995. Processing and nutritive qualities of potato tubers as affected by fertilizer nutrients and sulphur application. J. Indian Potato Ass. 22(1–2), 32–37.
Singh J.P., Srivastava O.P., 1996. Accumulation and distribution pattern of iron in potato plant and influence of sulphur fertilization. J. Indian Potato Ass. 23(1–2), 68–71.
Sillanpää M., 1982. Micronutrients and the nutrient status of soils: a global study. FAO Soils Bull. Rome, 9–12.
Smoleń S., Sady W., Ledwożyw-Smoleń I., 2010. Quantitative relations between the content of selected trace elements in soil extracted with 0.03 M CH3COOH or 1 M HCl and its total concentration in carrot storage roots. Acta Sci. Pol., Hortorum Cultus 9(4), 3–12.
Starck Z., 2002. Składniki mineralne w roślinach. [In:] J. Kopcewicz, S. Lewak (eds.). Fizjologia roślin. PWN Warszawa, 228–239.
Trętowski J., Wójcik A.R., 1988. Metodyka badań rolniczych. WSRP Siedlce, 124–215.
Uriu-Adams J.Y., Keen C.L., 2005. Copper, oxidative stress, and human health. Mol. Aspects Med., 26, 268–298.
Vicente A.R., Manganaris G.A., Sozzi G.O., Crisisto C.H., 2009. Nutritional Quality of Fruits and Vegetables. [In:] W.J. Florkowski, R.L. Shewfelt, R. Brueckner, S.E. Prussia (eds.). Postharvest Handing: A Systems Approach. Elsevier INC., 81–86.
Wang Zhao-Hui, Li Sheng-Xiu, Malhi S., 2008. Effects of fertilization and other agronomic measures on nutritional quality of crops. J. Sci. Food Agric. 88, 7–23.
Welch, R.M., Graham, R.D., 2002. Breeding crops for enhanced micronutrient content. Plant and Soil 245, 205–210.
Welch R.M., Graham R.D., 2005. Agriculture: the real nexus for enhancing bioavailable micronutrients in food crops. J. Trace Elem. Med. Biol. 18, 299–307.
White P.J., Broadley M.R., 2005. Biofortifying crops with essential mineral elements. Trends Plant Sci. 10, 586–593.
White P.J., Broadley M.R., 2009. Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 182, 49–84.
WHO, 2001. Iron deficiency anemia, Assessment, Prevention, and Control, A guide for programme managers, Unicef/UNU/WHO, WHO/NHD/01.3, Geneva.
Wojciechowska-Mazurek M., Starska K., Brulińska-Ostrowska E., Karłowski K., 2003. Maksymalne dopuszczalne poziomy metali szkodliwych dla zdrowia w żywności. Przem. Spoż. 2, 44–51.
Zarzecka K., 2004. Zawartość żelaza i manganu w bulwach ziemniaka w zależności od sposobu zwalczania chwastów. Acta Sci. Pol., Agricultura 3(1), 165–173.
Zarzecka K., Gugała J., 2005. Wpływ sposobów regulacji zachwaszczenia na zawartość miedzi i żelaza w bulwach ziemniaka jadalnego. J. Element. 10(3), 615–623.
Downloads
Download data is not yet available.