Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 23 Nr 1 (2024)

Artykuły

In vitro propagation, cold preservation and cryopreservation of Taxus baccata L., an endangered medicinal and ornamental shrub

DOI: https://doi.org/10.24326/asphc.2024.5277
Przesłane: 21 września 2023
Opublikowane: 2024-02-29

Abstrakt

In vitro propagation, cold preservation, and cryopreservation are three essential approaches to preserve the genetic resources of red-listed plants, including English yew (Taxus baccata L.). Different concentrations of plant growth regulators (PGRs) and different pre-treatments of cold preservation and cryopreservation are the prerequisites of these three approaches. Apical bud as explant and Murashige and Skoog (MS) as the culture medium for all three sections of the research, kinetin (Kin) and indole-3-butyric acid (IBA) as PGRs for the micropropagation section, and encapsulation-dehydration as pre-treatment for the sections of cold preservation and cryopreservation were used. The results of the micropropagation section indicated that the highest number of shoots (5.40 per explant) and roots (5.98 per explant) were obtained from the culture of the explants on the media containing 1 mg L–1 IBA together with 1 and 2 mg L–1 Kin, respectively. The results of the cold preservation section revealed that the highest percentage of survival of germplasms (100%) after storage in the refrigerator was observed in the apical buds pre-treated by dehydration of encapsulated explants with 0.75 M sucrose for two hours, followed by dehydration under a laminar airflow cabinet for two hours. The results of the cryopreservation section demonstrated that the highest percentage of survival of germplasms (100%) after storage in liquid nitrogen was obtained in the apical buds pre-treated by encapsulation-dehydration under a laminar airflow cabinet for two hours. At the acclimatization stage, 100% of the plantlets acclimatized suitably with ex vitro conditions.

Bibliografia

  1. Abbasin, Z., Zamani, S., Movahedi, S., Khaksar, G., Sayed Tabatabaei, B.E. (2010). In vitro micropropagation of yew (Taxus baccata) and production of plantlets. Biotechnol., 9(1), 48–54. https://doi.org/10.3923/biotech.2010.48.54 DOI: https://doi.org/10.3923/biotech.2010.48.54
  2. Adibi Baladeh, D., Kaviani, B. (2021). Micropropagation of medlar (Mespilus germanica L.), a Mediterranean fruit tree. Intl. J. Fruit Sci., 21(1), 242–254. https://doi.org/10.1080/15538362.2020.1871156 DOI: https://doi.org/10.1080/15538362.2020.1871156
  3. Alvarez, J.M., Majada, J., Ordas, R.J. (2009). An improved micropropagation protocol for maritime pine (Pinus pinaster) isolated cotyledons. Forest, 10, 175–184. https://doi.org/10.1093/forestry/cpn052 DOI: https://doi.org/10.1093/forestry/cpn052
  4. Arda, H., Dayan, S., Kartal, Ç., Güler, N. (2016). In vitro conservation of critically endangered Dianthus ingoldbyi Turrill under slow growth conditions. Trakya Univ. J. Nat. Sci., 17(1), 47–54. http://dergipark.org.tr/trkjnat/issue/25378/267847
  5. Aroonpong, P., Chang, J.C. (2015). Micropropagation of a difficult-to-root weeping mulberry (Morus alba var. Shidareguwa): A popular variety for ornamental purposes.Sci. Hortic., 194, 320–326. https://doi.org/10.1016/j.scienta.2015.08.019 DOI: https://doi.org/10.1016/j.scienta.2015.08.019
  6. Asa, N., Kaviani, B. (2020). In vitro propagation of orchid Phalaenopsis amabilis (L.) Blume var. Jawa. Iran. J. Plant Physiol., 10 (2), 3113–3123. https://doi.org/10.30495/ijpp.2020.672571
  7. Benelli, C., Özüdoğru, E.A., Lambardi, M., Dradi, G. (2012). In vitro conservation of ornamental plants by slow growth storage. Acta Hortic., 961, 89–93. https://doi.org/10.17660/ActaHortic.2012.961.8 DOI: https://doi.org/10.17660/ActaHortic.2012.961.8
  8. Brickell, C., Zuk, J.D. (1997). A-Z Encyclopedia of Garden Plants. DK Publishing, Inc. New York, USA. 1095 pp.
  9. Chang, S.-H., Ho, C.-K., Chen, Z.-Z., Tsay, Y.-J. (2001). Micropropagation of Taxus mairei from mature trees. Plant Cell Rep., 20, 496–502. https://doi.org/10.1007/s002990100362 DOI: https://doi.org/10.1007/s002990100362
  10. Dinesh, R.M., Patel, A.K., Vibha, J.B., Shekhawat, S., Shekhawat, S.N. (2019). Cloning of mature pomegranate (Punica granatum) cv. Jalore seedless via in vitro shoot production and ex vitro rooting. Vegetos, 32, 181–189. https://doi.org/10.1007/s42535-019-00021-8 DOI: https://doi.org/10.1007/s42535-019-00021-8
  11. Divakaran, M., Nirmal Babu, K., Peter, K.V. (2006). Conservation of Vanilla species, in vitro. Sci. Hortic., 110, 175–180. https://doi.org/10.1016/j.scienta.2006.07.003 DOI: https://doi.org/10.1016/j.scienta.2006.07.003
  12. Ewald, D. (2007). Micropropagation of yew (Taxus baccata L.). In: S.M. Jain and H. Häggman (eds.), Protocols for Micropropagation of Woody Trees and Fruits, 117–123, Springer. https://doi.org/10.1007/978-1-4020-6352-7_11 DOI: https://doi.org/10.1007/978-1-4020-6352-7_11
  13. Fan, S., Jian, D., Wei, X., Chen, J., Beeson, R.C., Zhou, Z., Wang, X. (2017). Micropropagation of blueberry ‘Bluejay’ and ‘Pink Lemonade’ through in vitro shoot culture. Sci. Hortic., 226(19), 277–284. https://doi.org/10.1016/j.scienta.2017.08.052 DOI: https://doi.org/10.1016/j.scienta.2017.08.052
  14. Ghahraman, A. (2000). Colored Flora of Iran. Iran Forests and Ranges Research Institute, Department of Botany. Pub. No. 743, Code: 007.001.001.
  15. González-Benito, M.E., Pérez, C., Viviani, A.B. (1997). Cryopreservation of nodal explants of an endangered plant species (Centaurium rigualii Esteve) using the encapsulation-dehydration method. Biodiver. Conserv., 6, 583–590. https://doi.org/10.1023/A:1018337429589 DOI: https://doi.org/10.1023/A:1018337429589
  16. Hao, Y.J., Cheng, Y.J., Deng, X. (2005). Stable maintenance and expression of a foreign gene in transgenic pear shoots retrieved from in vitro conservation. J. Plant Physiol., 162(2), 237–43. https://doi.org/10.1016/j.jplph.2004.07.003 DOI: https://doi.org/10.1016/j.jplph.2004.07.003
  17. Kaviani, B. (2010). Cryopreservation by encapsulation–dehydration for long–term storage of some important germplasm: Seed of lily [Lilium ledebourii (Baker) Bioss.], embryonic axes of Persian lilac (Melia azedarach L.) and tea (Camellia sinensis). Plant Omics J., 3(6), 177–182. https://doi.org/10.17660/ActaHortic.2011.908.32 DOI: https://doi.org/10.17660/ActaHortic.2011.908.32
  18. Kaviani, B. (2011). Conservation of plant genetic resources by cryopreservation. Aus. J. Crop Sci., 5 (6), 778–800.
  19. Kaviani, B. (2015). Some useful information about micropropagation. J. Ornament. Plants, 5(1), 29–40.
  20. Kaviani, B., Abadi, D.H., Torkashvand, A.M., Hoor, S.S. (2009). Cryopreservation of seeds of lily (Lilium ledebourii Baker Bioss.): use of sucrose and dehydration. Afr. J. Biotechnol., 8 (16), 3809–3810.
  21. Kaviani, B., Dahkaei, M., Hashemabadi, D., Darabi, A. (2010). Cryopreservation of Lilium ledebourii (Baker) Bioss. by encapsulation-vitrification and in vivo media for planting of germplasm. Amer.-Eur. J. Agric. Environ. Sci., 8(5), 556–560.
  22. Kaviani, B., Deltalab, B., Kulus, D., Tymoszuk, A., Bagheri, H., Azarinejad, T. (2022). In vitro propagation of Pyracantha angustifolia (Franch.) C.K. Schneid. Hortic., 8(10), 964. https://doi.org/10.3390/horticulturae8100964 DOI: https://doi.org/10.3390/horticulturae8100964
  23. Kaviani, B., Kulus, D. (2022). Cryopreservation of endangered ornamental plants and fruit crops from tropical and subtropical regions. Biol., 11, 847. https://doi.org/10.3390/biology11060847 DOI: https://doi.org/10.3390/biology11060847
  24. Kaviani, B., Negahdar, N. (2017). Propagation, micropropagation and cryopreservation of Buxus hyrcana Pojark., an endangered ornamental shrub. South Afr. J. Bot., 111, 326–335. https://doi.org/10.1016/j.sajb.2017.04.004 DOI: https://doi.org/10.1016/j.sajb.2017.04.004
  25. Kaviani, B., Safari-Motlagh, M.R., Padasht-Dehkaei, M.N., Darabi, A.H., Rafizadeh, A. (2008). Cryopreservation of lily [Lilium ledebourii (Baker) Bioss.] germplasm by encapsulation-dehydration. Int. J. Bot., 4(4), 491–493. https://doi.org/10.3923/ijb.2008.491.493 DOI: https://doi.org/10.3923/ijb.2008.491.493
  26. Kereša, S., Bošnjak, A.M., Barić, M., Jerčić, I.H., Šarčević, H., Biško, A. (2012). Efficient axillary shoot proliferation and in vitro rooting of apple cv. ‘Topaz’. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(1), 113–118. https://doi.org/10.15835/nbha4017211 DOI: https://doi.org/10.15835/nbha4017211
  27. Khoddamzadeh, A.A., Sinniah, U.R., Lynch, P., Kadir, M.A., Kadzimin, S.B., Mahmood, M. (2011). Cryopreservation of protocorm-like bodies (PLBs) of Phalaenopsis bellina (Rchb. f.) Christenson by encapsulation-dehydration. Plant Cell Tiss. Org. Cult., 107, 471–481. https://doi.org/10.1007/s11240-011-9997-4 DOI: https://doi.org/10.1007/s11240-011-9997-4
  28. Kishor, K., Upreti, B.M., Pangtey, Y.P.S., Tewari, A., Tewari, L.M. (2015). Propagation and conservation of Himalayan Yew (Taxus baccata L.) through air layering: A Simple Method of Clonal Propagation. Ann. Plant Sci., 1064–1067.
  29. Kochkin, D.V., Demidova, E.V., Globa, E.B., Nosov, A.M. (2023). Profiling of taxoid compounds in plant cell cultures of different species of Yew (Taxus spp.). Molecules, 28, 2178. https://doi.org/10.3390/molecules28052178 DOI: https://doi.org/10.3390/molecules28052178
  30. Kulus, D., Zalewska, M. (2014). Cryopreservation as a tool used in long-term storage of ornamental species a review. Sci. Hortic., 168, 88–107. https://doi.org/10.1016/j.scienta.2014.01.014 DOI: https://doi.org/10.1016/j.scienta.2014.01.014
  31. Li, Q., Yu, P., Lai, J., Gu, M. (2021). Micropropagation of the potential blueberry rootstock–Vaccinium arboretum through axillary shoot proliferation. Sci. Hortic., 280, 109908. https://doi.org/10.1016/j.scienta.2021.109908 DOI: https://doi.org/10.1016/j.scienta.2021.109908
  32. Mahipal, S., Shekhawat, N.S., Manokari, M. (2016). In vitro propagation, micromorphological studies and ex vitro rooting of cannon ball tree (Couroupita guianensis aubl.): a multipurpose threatened species. Physiol. Mol. Biol. – Plants, 22(1), 131–142. https://doi.org/10.1007/s12298-015-0335-x DOI: https://doi.org/10.1007/s12298-015-0335-x
  33. Mahmoodi, Sh., Ahmadi, K., Heydari, M., Karami, O., Esmailzadeh, O., Heung, B. (2023). Elevational shift of endangered European yew under climate change in Hyrcanian mountain forests: Rethinking conservation-restoration strategies and management. Forest Ecol. Management, 529, 120693. https://doi.org/10.1016/j.foreco.2022.120693 DOI: https://doi.org/10.1016/j.foreco.2022.120693
  34. Manokari, M., Latha, R., Priyadharshini, S., Jogam, P., Shekhawat, M.S. (2021). Short-term cold storage of encapsulated somatic embryos and retrieval of plantlets in grey orchid (Vanda tessellata (Roxb.) Hook. ex G.Don). Plant Cell. Tiss. Org. Cult., 144, 171–183. https://doi.org/10.1007/s11240-020-01899-y DOI: https://doi.org/10.1007/s11240-020-01899-y
  35. Mitchell, A.K. (1997). Propagation and growth of pacific yew (Taxus brevifolia Nutt.) cuttings. Northwest Sci., 71, 56–63.
  36. Mohanty, P., Das, M.C., Kumaria, S., Tandon, P. (2012). High-efficiency cryopreservation of the medicinal orchid Dendrobium nobile Lindl. Plant Cell Tiss. Org. Cult., 109, 297–305. https://doi.org/10.1007/s11240-011-0095-4 DOI: https://doi.org/10.1007/s11240-011-0095-4
  37. Mukherjee, A., Kumar Gayrav, A., Singh, S., Yadav, S., Bhowmick, S., Abeysinghe, S., Prakash Verma, J. (2022). The bioactive potential of phytohormones: A review. Biotechnol. Rep., 35, e00748. https://doi.org/10.1016/j.btre.2022.e00748 DOI: https://doi.org/10.1016/j.btre.2022.e00748
  38. Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15, 473–479. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  39. Negahdar, N., Hashemabadi, D., Kaviani, B. (2019). In vitro conservation and cryopreservation of Buxus sempervirens L., a critically endangered ornamental shrub. Rus. J. Plant Physiol., 68(4), 661–668. https://doi.org/10.1134/s1021443721040117 DOI: https://doi.org/10.1134/S1021443721040117
  40. Nunes, S., Sousa, D., Pereira, V.T., Correia, S., Marum, L., Santos, C., Dias, M.C. (2018). Efficient protocol for in vitro mass micropropagation of slash pine. In Vitro Cell. Dev. Biol. – Plant, 54(2), 175–183. https://doi. org/10.1007/s11627-018-9891-4 DOI: https://doi.org/10.1007/s11627-018-9891-4
  41. O’Brien, C., Hiti-Bandaralage, J., Folgado, R., Lahmeyer, S., Hayward, A., Folsom, J., Mitter, N. (2020). A method to increase regrowth of vitrified shoot tips of avocado (Persea americana Mill.): First critical step in developing a cryopreservation protocol. Sci. Hortic., 266, 109305. https://doi.org/10.1016/j.scienta.2020.109305 DOI: https://doi.org/10.1016/j.scienta.2020.109305
  42. Ozden-Tokatli, Y., De Carlo, A., Gumusel, F., Pignattelli, S., Lambardi, M. (2008). Development of encapsulation techniques for the production and conservation of synthetic seeds in ornamental species. Propag. Ornam. Plants, 8, 17–22.
  43. Panis, B. (2019). Sixty years of plant cryopreservation: From freezing hardy mulberry twigs to establishing reference crop collections for future generations. Acta Hortic., 1234, 1–8. https://doi.org/10.17660/ActaHortic.2019.1234.1 DOI: https://doi.org/10.17660/ActaHortic.2019.1234.1
  44. Panis, B., Nagel, M., Van den Houwe, I. (2020). Challenges and prospects for the conservation of crop genetic resources in field gene banks, in in vitro collections and/or in liquid nitrogen. Plants, 9, 1634. https://doi.org/10.3390/plants9121634 DOI: https://doi.org/10.3390/plants9121634
  45. Paul, H., Daigny, G., Sangwan-Noreel, B.S. (2000). Cryopreservation of apple (Malusx domestica Borkh.) shoot tips following encapsulation or encapsulation-vitrification. Plant Cell Rep., 19, 768–774. https://doi.org/10.1007/s002990000195 DOI: https://doi.org/10.1007/s002990000195
  46. Savita, V., Virk, G., Nagpal, A. (2010). Effect of explant type and different plant growth regulators on callus induction and plantlet regeneration in Citrus jambhiri Lush. Environ. We Intl. J. Sci. Technol., 5, 97–106.
  47. Seydi, S., Sedaghathoor, S., Kaviani, B. (2020). In vitro storage techniques of Fritillaria imperialis Lubra Maxima, a wild rare and critically endangered ornamental species. CMU J. Nat. Sci., 19(3), 612–628. DOI: https://doi.org/10.12982/CMUJNS.2020.0040
  48. Sharma, H. (2017). Role of growth regulators in micropropagation of woody plants – A review. Intl. J. Adv. Res., 5, 2378–2385. https://doi.org/10.21474/IJAR01/3421 DOI: https://doi.org/10.21474/IJAR01/3421
  49. Sharma, H., Vashistha, B.D. (2015c). In vitro plant regeneration through callus in Giloy (Tinospora cordifolia (Willd.) Miers ex Hook. f & Thoms.). Ind. J. Sci., 12(34), 59–68.
  50. Sharma, U., Kataria, V., Shekhawar, N.S. (2017). In vitro propagation, ex vitro rooting and leaf micromorphology of Bauhinia racemosa Lam.: A leguminous tree with medicinal values. Physiol. Mol. Biol. Plants, 23(4), 969–977. https://doi.org/10.1007/s12298-017-0459-2 DOI: https://doi.org/10.1007/s12298-017-0459-2
  51. Subramaniam, S., Sinniah, U.R., Khoddamzadeh, A.L., Periasamy, S., James, J.J. (2011). Fundamental concept of cryopreservation using Dendrobium Sonia-17 protocorm-like bodies by encapsulation-dehydration technique. Afr. J. Biotechnol., 10(19), 3902–3907.
  52. Surenciski, M.R., Flachsland, E.D., Terada, G., Mroginski, L.A., Rey, H.Y. (2012). Cryopreservation of Cyrtopodium hatschbachii Pabst (Orchidaceae) immature seeds by encapsulation-dehydration. Biocell., 36(1), 31–36. DOI: https://doi.org/10.32604/biocell.2012.36.031
  53. Tumpa, K., Liber, Z., Šatović, Z., Medak, J., Idžojtić, M., Vidaković, A., Vukelić, J., Šapić, I., Nikl, P., Poljak, I. (2022). High level of phenotypic differentiation of common yew (Taxus baccata L.) populations in the North-Western part of the Balkan Peninsula. Forests, 13(1), 78. https://doi.org/10.3390/f13010078 DOI: https://doi.org/10.3390/f13010078
  54. Vendrame, W.A., de Faria, R.T., Sorace, M., Sahyun, S.A. (2014). Orchid cryopreservation. Ciênc Agrotechnique, Lavras, 38(3), 213–229. https://doi.org/10.1590/S1413-70542014000300001 DOI: https://doi.org/10.1590/S1413-70542014000300001
  55. Yıldırım, H. (2012). Micropropagation of Pistacia lentiscus L. from axenic seedling-derived explants. Sci. Hortic., 137(1), 29–35. https://doi.org/10.1016/j.scienta.2012.01.020 DOI: https://doi.org/10.1016/j.scienta.2012.01.020
  56. Zhang, W., Liu, X., Hu, Y., Tan, S. (2023). Incorporate delivery, warming and washing methods into efficient cryopreservation. Front. Bioeng. Biotechnol. 11, 1215591. https://doi.org/10.3389/fbioe.2023.1215591 DOI: https://doi.org/10.3389/fbioe.2023.1215591

Downloads

Download data is not yet available.

Inne teksty tego samego autora

<< < 1 2