Aktywność biologiczna bzu czarnego (Sambucus nigra L.)


Abstrakt

Dziki bez czarny (Sambucus nigra L.) jest jedną z najczęściej użytkowanych roślin zielarskich na świecie. W medycynie ludowej surowce czarnego bzu stosowane były przede wszystkim jako środki napotne, przeciwgorączkowe i moczopędne. Współcześnie udowodniono również działanie przeciwbakteryjne, przeciwwirusowe, przeciwdepresyjne, przeciwnowotworowe i hipoglikemizujące oraz obniżające stężenie tłuszczu i lipidów ekstraktów z bzu czarnego. Skład chemiczny kwiatów i owoców bzu czarnego jest zmienny i podlega różnym czynnikom zmienności (genetyczne, ontogenetyczne, środowiskowe, pozbiorcze). Kwiaty bzu czarnego zawierają flawonoidy, kwasy fenolowe, olejek eteryczny, kwasy organiczne, cukry i związki mineralne, podczas gdy w owocach dominują antocyjany. Bogaty skład chemiczny surowców bzu czarnego oraz ich silna aktywność biologiczna stwarzają duże możliwości zastosowania w produkcji farma­ceutycznej, spożywczej i kosmetycznej.


Słowa kluczowe

Sambuci flos; Sambuci fructus; flawonoidy; antocyjany; aktywność antyoksydacyjna

Abuja P., Murkovic M., Pfannhauser W., 1998. Antioxidant and prooxidant activities of elderberry (Sambucus nigra) extract in low-density lipoprotein oxidation. J. Agric. Food Chem. 46 (10), 4091–4096.
Ağalar H., Demirci B., Demirci F., Kirimer N., 2017. The volatile compounds of the elderflowers extract and the essential oil. Rec. Nat. Prod. 11(5), 491–496. http://doi.org/10.25135/rnp.63.16.08.058
Akbulut M., Ercisli S., Tosun M., 2009. Physico-chemical characteristics of some wild grown European elderberry (Sambucus nigra L.) genotypes. Phcog. Mag. 5(20), 320–323.
Anton A., Pintea A., Rugină D., Sconţa Z., Hanganu D., Vlase L., Benedec D., 2013. Preliminary studies on the chemical characterization and antioxidant capacity of polyphenols from Sambu-cus sp. Dig. J. Nanomater. Biostructures 8(3), 973–980.
Arjoon A., Saylor, C., May M., 2012. In vitro efficacy of antimicrobial extracts against the atypical ruminant pathogen Mycoplasma mycoides subsp. capri. BMC Complement. Altern. Med. 12, 169. https://doi.org/10.1186/1472-6882-12-169
Ataee R., Falahati A., Ebrahimzadeh M., Shokrzadeh M., 2016. Anticonvulsant activities of Sambu-cus nigra. Eur. Rev. Med. Pharmacol. Sci. 20, 3123–3126.
Atkinson M., Atkinson D., 2002. Sambucus nigra L. J. Ecol. 90, 895–923.
Badescu L., Badulescu O., Badescu M., Ciocoiu M., 2012. Mechanism by Sambucus nigra extract improves bone mineral density in experimental diabetes. Evid. Based Complement. Alternat. Med.7, 1–6. http://doi.org/10.1155/2012/848269
Badescu L., Badulescu O., Badescu M., Ciocoiu M., 2015. Effects of Sambucus nigra and Aronia melanocarpa extracts on immune system disorders within diabetes mellitus. Pharm. Biol. 53(4), 533–539.
Barak V., Halperin T., Kalickman I., 2001. The effect of Sambucol, a black elderberry-based, natural product, on the production of human cytokines: I. Inflammatory cytokines. Eur. Cytokine Netw. 12(2), 290–296.
Barak V., Birkenfeld S., Halperin T., Kalickman I., 2004. The effect of herbal remedies on the production of human inflammatory and anti-inflammatory cytokines. Israel Med. Assoc. J. 4, 919.
Barros L., Cabrita L., Boas M., Carvalho A., Ferreira I., 2011. Chemical, biochemical and electro-chemical assays to evaluate phytochemicals and antioxidant activity of wild plants. Food Chem. 27(4), 1600–1608. http://doi.org/10.1016/j.foodchem.2011.02.024
Bartak M., Lange A., Słońska A., Cymerys J., 2020. Antiviral and healing potential of Sambucus nigra extracts. Rev. Bionatura, 5(3), 1264–1270. http://dx.doi.org/10.21931/RB/2020.05.03.18
Bhattacharya S., Christensen K., Olsen L., Christensen L., Grevsen K., Færgeman N., Kristiansen K., Young J., Oksbjerg N., 2013. Bioactive components from flowers of Sambucus nigra L. increase glucose uptake in primary porcine myotube cultures and reduce fat accumulation in Caenorhabditis elegans. J. Agric. Food Chem. 61(46), 11033–11040. http://dx.doi.org/10.1021/jf402838a
Bolarinwa I., Orfila C., Morgan M., 2014. Amygdalin content of seeds, kernels and food products commercially-available in the UK. Food Chem., 152, 133–139. http://dx.doi.org/10.1016/j.foodchem.2013.11.002.
Bratu M., Doroftei E., Negreanu-Pirjol T., Hostina C., Porta S., 2012. Determination of antioxidant activity and toxicity of Sambucus nigra fruit extract using alternative methods. Food Technol. Biotechnol. 50(2), 177–182.
Celik S., Ozyurek M., Guclu K., Capanoglu E., Apak R., 2014. Identification and anti-oxidant capacity determination of phenolics and their glycosides in elderflower by on-line HPLC-CUPRAC method. Phytochem. Anal. 25(2), 147–154. http://dx.doi.org/10.1002/pca.2481
Chatterjee A., Yasmin T., Bagchi D., Stohs S., 2004. Inhibition of Helicobacter pylori in vitro by various berry extracts, with enhanced susceptibility to clarithromycin. Mol. Cell. Biochem., 265(1–2), 19–26. http://dx.doi.org/10.1023/b:mcbi.0000044310.92444.ec
Chen C., Zuckerman D., Brantley S., Sharpe M., Childress K., Hoiczyk E., Pendleton A., 2014. Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication. BMC Vet. Res. 10(24), 1–12. https://doi.org/10.1186/1746-6148-10-24
Christensen L., Kaack K., Fretté X., 2008. Selection of elderberry (Sambucus nigra L.) Genotypes best suited for the preparation of elderflower extracts rich in flavonoids and phenolic acids. Eur. Food Res. Technol., 227, 293–305. http://dx.doi.org/10.1007/s00217-007-0723-8
Chrubasik C., Maier T., Dawid C., Torda T., Schieber A., Hofmann T., Chrubasik S., 2008. An observational study and quantification of the actives in a supplement with Sambucus nigra and Asparagus officinalis used for weight reduction. Phytother. Res. 22(7), 913–918. http://dx.doi.org/10.1002/ptr.2415
Cioch M., Satora P., Skotniczny M., Semik-Szczurak D., Tarko T., 2017. Characterization of antimicrobial properties of extracts of selected medicinal plants. Pol. J. Microbiol. 66(4), 463– 472. http://dx.doi.org/10.5604/01.3001.0010.7002
Ciocoiu M., Badescu L., Badulescu O., Tutunaru D., Badescu M., 2012. Protective intervention of Sambucus nigra polyphenols in the diabetic heart. Ann. Romanian Soc. Cell Biol. 17(1), 312–317.
Costică N., Stratu A., Boz I., Gille E., 2019. Characteristics of elderberry (Sambucus nigra L.) fruit. Agric. Conspec. Sci. 84(1), 115–122.
Dawidowicz A., Wianowska D., Baraniak B., 2006. The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts). LWT – Food Sci. Technol. 39, 308–315. http://dx.doi.org/10.1016/j.lwt.2005.01.005
DellaGreca M., Fiorentino A., Monaco P., Previtera L., Simonet., 2000. Degraded cyanogenic glucosides from Sambucus nigra. Tetrahedron Lett. 41, 6507–6510. https://doi.org/10.1016/S0040-4039(00)00994-1
Denev P., Ciz M., Ambrozova G., Lojek A., Yanakieva I., Kratchanova M., 2010. Solid phase extraction of berries’ anthocyanins and evaluation of their antioxidative properties. Food Chem. 123(4), 1055–1061. https://doi.org/10.1016/j.foodchem.2010.05.061
Diviš P., Pořízka J., Vespalcová M., Matějíček A., Kaplan J., 2015. Elemental composition of fruits from different black elder (Sambucus nigra L.) cultivars grown in the Czech Republic. J. Elem. 20(3), 549–557. https://doi.org/10.5601/jelem.2015.20.1.758
Domínguez R., Zhang L., Rocchetti G., Lucini L., Pateiro M., Munekata P., Lorenzo J., 2020. Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimiza-tion of extraction parameters and bioactive properties. Food Chem. 330, 127266. https://doi.org/10.1016/j.foodchem.2020.127266
Duymuş H., Göger F., Başer C., 2014. In vitro antioxidant properties and anthocyanin compositions of elderberry extracts. Food Chem. 155, 112–119. https://doi.org/10.1016/j.foodchem.2014.01.028
Dżugan M., Pizoń A., Tomczyk M., Kapusta I., 2019. A new black elderberry dye enriched in antioxidants designed for healthy sweets production. Antioxidants 8(8), 257. https://doi.org/10.3390/antiox8080257.
Farmakopea Polska IV, 1970. PZWL, Warszawa.
Farmakopea Polska XI, 2017. PZWL, Warszawa.
Farrel N., Norris, G., Ryan J., Porter C., Jiang C., Blesso C., 2015a. Black elderberry extract attenuates inflammation and metabolic dysfunction in diet-induced obese mice. Br. J. Nutr. 114, 1123–1131. https://doi.org/10.1017/S0007114515002962
Farrel N., Norris G., Lee S., Chun O., Blesso C., 2015b. Anhocyanin-rich black elderberry extract improves markers of HDL function and reduces aortic cholesterol in hyperlipidemic mice. Food Funct. 6(4), 1278–1287. https://doi.org/10.1039/c4fo01036a
Ferreira S., Silva A., Nunes F., 2020a. Sambucus nigra L. fruits and flowers: Chemical composition and related bioactivities. Food Rev. Int., 1–29. https://doi.org/10.1080/87559129.2020.1788578
Ferreira S., Silva P., Silva A., Nunes F., 2020b. Effect of harvesting year and elderberry cultivar on the chemical composition and potential bioactivity: a three-year study. Food Chem. 302, 1253–1266. https://doi.org/10.1016/j.foodchem.2019.125366
Fink R., Roschek B., Randall A., 2009. HIV type-1 entry inhibitors with a new mode of action. Antivir. Chem. Chemother. 19, 243–255. https://doi.org/10.1177/095632020901900604
Frøkiær H., Henningsen L., Metzdorff S.B., Weiss G., Roller M., Flanagan J., Fromentin E., Ibarra A., 2012. Astragalus root and elderberry fruit extracts enhance the IFN-β stimulatory effects of Lactobacillus acidophilus in murine-derived dendritic cells. PLoS One 7(10), e47878. https://doi.org/10.1371/journal.pone.0047878
Golay A., Ybarra J., 2005. Link between obesity and type 2 diabetes. Best Pract. Res. Clin. Endo-crinol. Metab. 19(4), 649–663. https://doi.org/10.1016/j.beem.2005.07.010
Goud S., Prasad G., 2020. Antioxidant, antimicrobial activity and total phenol and flavonoids analysis of Sambucus nigra (elderberry). Int. J. Curr. Pharm. Res. 12(1), 35–37. https://doi.org/10.22159/ijcpr.2020v12i1.36829
Gray A., Flatt P., Abdel-Wahab Y., 2000. The traditional plant treatment, Sambucus nigra (elder), exhibits insulin-like and insulin-releasing actions in vitro. J. Nutr., 130, 15–20. https://doi.org/10.1093/jn/130.1.15
Harokopakis E., Albzreh M., Haase E., Scannapieco F., Hajishengallis G., 2006. Inhibition of proinflammatory activities of major periodontal pathogens by aqueous extracts from elder flower (Sambucus nigra). J. Periodontol., 77 (2), 271–279. https://doi.org/10.1902/jop.2006.050232
Hearst C., McCollum G., Nelson D., Ballard L., Millar B., Goldsmith C., Rooney P., Loughrey A., Moore J., Rao J., 2010. Antibacterial activity of elder (Sambucus nigra L.) flower or berry against hospital pathogens. J. Med. Plant Red. 4, 1805–1809. https://doi.org/10.5897/JMPR10.147
Ho G.T.T., Wangensteen H., Barsett H., 2017. Elderberry and elderflower extracts, phenolic compounds, and metabolites and their effect on complement, RAW264.7 macrophages and dendritic cells. Int. J. Mol. Sci. 18, 584. https://doi.org/10.3390/ijms18030584
Jabłońska-Ryś E., Zalewska-Korona M., Kalbarczyk J., 2009. Antioxidant capacity, ascorbic acid and phenolics content in wild edible fruits. J. Fruit Ornam. Plant Res. 17(2), 115–120.
Kaack K., Christensen L., Hughes M., Eder R., 2006. Relationship between sensory quality and volatile compounds of elderflower (Sambucus nigra L.) extracts. Eur. Food Res. Technol. 223, 57–70. https://doi.org/10.1007/s00217-005-0122-y
Kaltsa O., Lakka A., Grigorakis S., Karageorgou I., Batra G., Bozinou E., Lalas S., Makris D., 2020. A green extraction proces for polyphenols from elderberry (Sambucus nigra L.) flowers using deep eutetic solvent and ultrasound-assisted pretreatment. Molecules 25(4), 921. https://doi.org/10.3390/molecules25040921
Kinoshita E., Hayashi K., Katayama H., Hayashi T., Obata A., 2012. Anti-influenza virus effects of elderberry juice and its fractions. Biosci. Biotechnol. Biochem. 76(9), 1633–1638. https://doi.org/10.1271/bbb.120112
Kislichenko V., Velma V., 2006. Amino-acid composition of flowers, leaves, and extract of Sambucus nigra flower. Chem. Nat. Compd., 42, 125–126. http://dx.doi.org/10.1007/s10600-006-0058-x
Kołodziej B., Drożdzal K., 2011. Właściwości przeciwutleniające kwiatów i owoców bzu czarnego pozyskiwanego ze stanu naturalnego. Żywn. Nauka Technol. Jakość, 4(77), 36–44.
Kong F., 2009. Pilot clinical study on a proprietary elderberry extract: efficacy in addressing influen-za symptoms. J. Pharmacol. Pharmacokinet., 5, 32–43.
Koponen J.M., Happonen A.M., Mattila P.H., Torronen A.R., 2007. Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. J. Agric. Food Chem. 55, 1612–1619. http://dx.doi.org/10.1021/jf062897a
Krawitz C., Mraheil M., Stein M., Imirzalioglu C., Domann E., Pleschka S., Hain T., 2011. Inhibito-ry activity of a standardized elderberry liquid extract against clinically-relevant human respirato-ry bacterial pathogens and influenza A and B viruses. BMC Complement. Altern. Med. 11(16), 1–6. https://doi.org/10.1186/1472-6882-11-16
Krzykowski A., Dziki D., Domin M., Kupryaniuk K., 2018. Wpływ parametrów konwekcyjnego i sublimacyjnego suszenia owoców bzu czarnego (Sambucus nigra L.) na kinetykę procesu i barwę suszu. Zesz. Prob. Post. Nauk Rol., 593, 39–48. https://doi.org/10.22630/ZPPNR.2018.593.14
Lee J., Finn C., 2007. Anthocyanins and other polyphenolics in American elderberry (Sambucus canadensis) and European elderberry (S. nigra) cultivars. J. Sci. Food Agric., 87, 2665–2675. https://doi.org/10.1002/jsfa.3029
Leja M., Mareczek A., Nanaszko B., 2007. Antyoksydacyjne właściwości owoców wybranych gatunków dziko rosnących drzew i krzewów. Rocz. AR Pozn. CCCLXXXIII, Ogrodn. 41, 327–331.
Lin L., Harnly J., 2007. A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials. J. Agric. Food Chem. 55(4), 108496. https://doi.org/10.1021/jf062431s
Mahboubi M., 2020. Sambucus nigra (black elder) as alternative treatment for cold and flu. Adv. Tradit. Med. 10, 1–10. https://doi.org/10.1007/s13596-020-00469-z
Mahmoudi M., Ebrrahimzadeh M., Dooshan A., Arimi A., Ghasemi N., Fathiazad F., 2014. Antidepressant activities of Sambucus ebulus and Sambucus nigra. Eur. Rev. Med. Pharmacol. Sci. 18, 3350–3353.
Mandrone M., Lorenzi B., Maggio A., Mantia T., Scordino M., Bruno M., Poli F., 2014. Polyphe-nols pattern and correlation with antioxidant activities of berries extracts from four different populations of Sicilian Sambucus nigra L. Nat. Prod. Res. 28(16), 1246–1253. https://doi.org/10.1080/14786419.2014.898147
Marțiș (Petruț) G., Mureșan V., Marc R., Mureșan C., Pop C., Buzgău G., Mureșan A., Ungur R., Muste S., 2021. The physicochemical and antioxidant properties of Sambucus nigra L. and Sambucus nigra Haschberg during growth phases: from buds to ripening. Antioxidants 10, 1093. https://doi.org/10.3390/antiox10071093
Mikulic-Petkovsek M., Ivancic A., Schmitzer V., Veberic R., Stampar F., 2016. Comparison of major taste compounds and antioxidative properties of fruits and flowers of different Sambucus species and interspecific hybrids. Food Chem. 200, 134–140. https://doi.org/10.1016/j.foodchem.2016.01.044.
Mikulic-Petkovsek M., Schmitzer V., Slatnar A., Stampar F., Veberic R., 2012. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. J. Food Sci. 77, 1064–1070. https://doi.org/10.1111/j.1750-3841.2012.02896.x
Milena V., Tatjana M., Gökhan Z., Ivana B., Aleksandra C., Mohammad M., Marija R., 2019. Advantages of contemporary extraction techniques for the extraction of bioactive consti¬tuents from black elderberry (Sambucus nigra L.) flowers. Ind. Crops Prod., 136, 93–101. https://doi.org/10.1016/j.indcrop.2019.04.058
Mladěnka P., Říha M., Martin J., Gorová B., Matějíček A., Spilková J., 2016. Fruit extracts of 10 varieties of elderberry (Sambucus nigra L.) interact differently with iron and copper. Phyto-chem. Lett. 18, 232–238.
Młynarczyk K., Walkowiak-Tomczak D., 2017. Bioactive properties of elderflowers (Sambucus nigra L.). World Sci. News 73(2), 115–119.
Młynarczyk K., Walkowiak-Tomczak D., Łysiak G., 2018. Bioactive properties of Sambucus nigra L. As a functional ingredient for food and pharmaceutical industry. J. Funct. Foods 40, 377–390. https://doi.org/10.1016/j.jff.2017.11.025
Młynarczyk K., Walkowiak-Tomczak D., Staniek H., Kidoń M., Łysiak G., 2020. The content of selected minerals, bioactive compounds, and the antioxidant properties of the flowers and fruit of selected cultivars and wildly growing plants of Sambucus nigra L. Molecules 25, 876. https://doi.org/10.3390/molecules25040876
Moldovan B., David L., Achim M., Clichici S., Filip G., 2016. A green approach to phytomediated synthesis of silver nanoparticles using Sambucus nigra L. fruits extract and their antioxidant ac-tivity. J. Mol. Liq. 221, 271–278. https://doi.org/10.1016/j.molliq.2016.06.003
Mratinić E., Fotirić M., 2007. Selection of black elderberry (Sambucus nigra L.) and evaluation of its fruits usability as biologically valuable food. Genetica, 3 (39), 305–314. https://doi.org/10.2298/GENSR0703305M
Najar B., Ferri B., Cioni P., Pistelli L., 2021. Volatile emission and essential oil composition of Sambucus nigra L. organs during different developmental stages. Plant Biosyst. 155(4), 721–729. https://doi.org/10.1080/11263504.2020.1779841
Nakajima J., Tanaka I., Seo S., Yamazaki M., Saito K., 2004. LC/PDA/ESI-MS profiling and radical scavenging activity of anthocyanins in various berries. J. Biomed. Biotechnol. 5, 241–247. https://doi.org/10.1155/S1110724304404045
Nowak G., Nawrot J., 2009. Surowce roślinne i związki naturalne stosowane w chorobach układu oddechowego. Herba Pol. 55(4), 178–213.
Nurzyńska-Wierdak R., 2016. Właściwości lecznicze i wykorzystanie w fitoterapii niektórych gatunków roślin drzewiastych. Krzewy półkuli północnej. Ann. UMCS Sec. EEE 26(2), 27–46.
Ochmian I., Oszmiański J., Skupień K., 2009. Chemical composition, phenolics, and firmness of small black fruits. J. Appl. Bot. Food Qual. 83(1), 64–69.
Olejnik A., Kowalska K., Olkowicz M., Rychlik J., Juzwa W., Myszka K., Dembczyński R., Białas W., 2015. Anti-inflammatory effects of gastrointestinal digested Sambucus nigra L. fruit extract analysed in co-cultured intestinal epithelial cells and lipopolysaccharide-stimulated macrophag-es. J. Funct. Foods 19, 649–660. https://doi.org/10.1016/j.jff.2015.09.064
Olejnik A., Olkowicz M., Kowalska K., Rychlik J., Dembczyński R., Myszka K., Juzwa W., Białas W., Moyer M., 2016. Gastrointestinal digested Sambucus nigra L. fruit extract protects in vitro cultured human colon cells against oxidative stress. Food Chem. 197, 648–657. https://doi.org/10.1016/j.foodchem.2015.11.017
Oniszczuk A., Olech M., Oniszczuk T., Wojtunik-Kulesza K., Wójtowicz A., 2019. Extraction methods, LC-ESI-MS /MS analysis of phenolic compounds and antiradical properties of func-tional food enriched with elderberry flowers or fruits. Arab. J. Chem. 12, 4719–4730. https://doi.org/10.1016/j.arabjc.2016.09.003
Petrut G., Muste S., Muresan C., Paucean A., Muresan A., Nagy M., 2017. Chemical profiles and antioxidant activity of black elder (Sambucus nigra L.) – a review. ‎J. Food Sci. Technol., 74(1), 9–16. https://doi.org/10.15835/buasvmcn-fst:11591
Pliszka B., 2020. Content and correlation of polyphenolic compounds, bioelements and antiradical activity in black elder berries (Sambucus nigra L.). J. Elem. 25(2), 595–605. https://doi.org/10.5601/jelem.2019.24.1.1829
Porter R., Bode R., 2017. A review of the antiviral properties of black elder (Sambucus nigra L.) products. Phytother. Res. 32(3), 413–425. https://doi.org/10.1002/ptr.5782
Ramanauskiene K., Inkeniene A.M., Puidokaite E., Grigonis A., 2019. Quality analysis of semisolid formulations with the liquid extract of elederflower (Sambucus nigra L.). Acta Pol. Pharm. – Drug Res. 76(6), 1061–1071. https://doi.org/10.32383/appdr/112052
Ran H., Yanyan L., Cui W., Yanan C., 2020. Phylogenetic and comparative analyses of complete chloroplast genomes of Chinese Viburnum and Sambucus (Adoxaceae). Plants 9(9), 1143. https://doi.org/10.3390/plants9091143
Rauha J., Remes S., Heinonen M., Hopia A., Kahkonen M., Kujala T., Pihlaja K., Vuorela H., Vuorela P., 2000. Antimicrobial effects of Finnish plant extracts containing flavonoids and oth-er phenolic compounds. Int. J. Food Microbiol. 56, 3–12. https://doi.org/10.1016/S0168-1605(00)00218-X
Rodino S., Butu A., Butu M., Cornea B., 2015. Comparative studies on antibacterial activity of licorice, elderberry and dandelion. Dig. J. Nanomater. Biostructures 10(3), 947–955.
Roschek B., Fink. R., McMichael M., Li D., Alberte R., 2009. Elderberry flavonoids bind to and prevent H1N1 infection in vitro. Phytochemistry 70(10), 1255–1261. https://doi.org/10.1016/j.phytochem.2009.06.003
Roxas M., Jurenka J., 2007. Colds and influenza: a review of diagnosis and conventional, botanical, and nutritional considerations. Altern Med Rev. 12(1), 25–48.
Salvador Â, Król E., Lemos V., Santos S., Bento F., Costa C., Almeida A., Szczepankiewicz D., Kulczyński B., Krejpcio Z., Silvestre A., Rocha S., 2017. Effect of elderberry (Sambucus nigra L.) extract supplementation in stz-induced diabetic rats fed with a high-fat diet. Int. J. Mol. Sci. 18(13), 1–19. https://doi.org/10.3390/ijms18010013
Schön C., Mödinger Y., Krüger F., Doebis C., Pischel I., Bonnländer B., 2021. A new high-quality elderberry plant extract exerts antiviral and immunomodulatory effects in vitro and ex vivo. Food Agric. Immunol. 32(1), 650–662. https://doi.org/10.1080/09540105. 2021.1978941
Sedláčková V., Grygorieva O., Fatrcová-Šramková K., Vergun O., Vinogradova Y., Ivanišová E., Brindza J., 2018. The morphological and antioxidant characteristics of inflorescences within wild-growing genotypes of elderberry (Sambucus nigra L.). Potravinarstvo Slovak J. Food Sci. 12(1), 444–453. https://doi.org/10.5219/919
Senica M., Stampar F., Veberic R., Mikulic-Petkovsek M., 2016. Processed elderberry (Sambucus nigra L.) products: A beneficial or harmful food alternative? LWT – Food Sci. Technol. 72, 182–188. https://doi.org/10.1016/j.lwt.2016.04.056
Sidor A., Gramza-Michałowska A., 2014. Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food – a review. J. Funct. Foods 18, 941–958. https://doi.org/10.1016/j.jff.2014.07.012
Silva R., Barreira J., Heleno S., Barros L., Calhelha R., Ferreira I., 2019. Anthocyanin profile of elderberry juice: a natural-based bioactive colouring ingredient with potential food application. Molecules 24(13), 2359. https://doi.org/10.3390/molecules24132359
Stoilova I., Wilker M., Stoyanova A., Krastanov A., Stanchev V., 2007. Antioxidant activity of extract from elder flower (Sambucus nigra L.). Herba Pol. 53(1), 45–54.
Szajdek A., Borowska E., 2008. Bioactive compounds and health-promoting properties of berry fruits a review. Plant Foods Hum. Nutr. 63, 147–156. https://doi.org/10.1007/s11130-008--0097-5
Tabaszewska M, Słupski J., Lisiewska Z, Ślązyk A., 2015. Wybrane właściwości prozdrowotne produktów z bzu czarnego (Sambucus nigra L.). Przem. Ferment. Owoc.-Warz. 3, 14–16.
Thomas A.L., Byers P.L., Finn C.E., Lee J., Chen Y.C., Rottinghaus G.E., Malone A.M., Applequist W.L., 2008. Occurrence of rutin and chlorogenic acid in elderberry leaf, flower, and stem in response to genotype, environment, and season. Proc. XXVII IHC – Plants as Food and Medicine, Acta Hort. 765, 197–206.
Thomas A.L., Perkins-Veazie P., Byers P.L., Finn C.E., Lee J., 2013. A comparison of fruit characteristics among diverse elderberry genotypes grown in Missouri and Oregon. J. Berry Res. (3), 159–168. https://doi.org/10.3233/JBR-130054
Torabian G., Valtchev P., Adil Q., Dehghani F., 2019. Anti-influenza activity of elderberry (Sambu-cus nigra). J. Funct. Foods 54, 353–360. https://doi.org/10.1016/j.jff.2019.01.031
Ulbricht C., Basch E., Cheung L., Goldberg H., Hammerness P., Isaac R., Khalsa K.P.S., Romm A., Viapiana A., Wesolowski M., 2017. The phenolic contents and antioxidant activities of infu-sions of Sambucus nigra L. plant. Foods Hum. Nutr., 72, 82–87. https://doi.org/10.1007/s11130-016-0594-x
Uzlasir T., Kadiroglu P., Selli S., Kelebek H., 2020. LC-DAD-ESI-MS/MS Characterization of elderberry flower (Sambucus nigra) phenolic compounds in ethanol, methanol, and aqueous extracts. J. Food Process Preserv. 45, e14478. https://doi.org/10.1111/jfpp.14478
Veberic R., Jakopič J., Stampar F., Schmitzer V., 2009. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chem. 114, 511–515. https://doi.org/10.1016/j.foodchem.2008.09.080
Viapiana A., Wesolowski M., 2017. The phenolic contents and antioxidant activities of infusions of Sambucus nigra L. Plant. Foods Hum. Nutr. 72, 82–87. https://doi.org/10.1007/s11130-016-0594-x
Vlachojannis J., Cameron M., Chrubasik S., 2010. A systematic review on the Sambuci fructus effect and efficacy profiles. Phytother. Res. 24(1), 1–8. https://doi.org/10.1002/ptr.2729
Vulić J., Vračar M., Šumić M., 2008. Chemical characteristics of cultivated elderberry fruit. Acta Period. Technol. 39, 85–90. https://doi.org/10.2298/APT0839085V
Waknine-Grinberg J., El-On J., Barak V., Barenholz Y., Golenser J., 2009. The immunomodulatory effect of Sambucol on leishmanial and malarial infections. Planta Med., 75 (6), 581–586. https://doi.org/10.1055/s-0029-1185357
Walz B., Chrubasik S., 2008. Impact of a proprietary concentrate of Sambucus nigra L. on urinary pH. Phytother. Res. 22(7), 977–978. https://doi.org/10.1002/ptr.2407
Waszkiewicz-Robak B., Biller E., 2018. Właściwości prozdrowotne czarnego bzu. Probl. Hig. Epidemiol. 99(3), 217–224.
Weng J., Linb C., Laic H., Line Y., Wange C., Tsaie Y., Wuf K., Huangg S., Lin C., 2019. Antiviral activity of Sambucus Formosana Nakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Res. 273, 1–8. https://doi.org/10.1016/j.virusres.2019.197767
Woziwoda B., 2014. Leśne rośliny o jadalnych owocach – przegląd botaniczny. Stud. Mater. Cent. Eduk. Przyr.-Leśn. 6(38), 105–118.
Wrońska-Pilarek, D., Jagodziński, A., Bocianowski, J., Marecik M., Janyszek-Sołtysiak M., 2020. Pollen morphology and variability of Sambucus nigra L. – Adoxaceae. Biologia 75, 481–493. https://doi.org/10.2478/s11756-019-00396-8
Wu X., Gu L., Prior R., McKay S., 2004. Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J. Agric. Food Chem. 52(26), 7846–7856.
Youdim M., Martin A., Joseph J., 2000. Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress. Free Radic. Biol. Med. 29(1), 51–60. https://doi.org/10.1016/S0891-5849(00)00329-4
Zielińska-Pisklak M., Szeleszczuk Ł., Młodzianka A., 2013. Bez czarny (Sambucus nigra) domowy sposób nie tylko na grypę i przeziębienie. Lek Pol. 23(6–7), 48–54.
Zielińska-Wasielica J., Olejnik A., Kowalska K., Olkowicz M., Dembczyński R., 2019. Elderberry (Sambucus nigra L.) fruit extract alleviates oxidative stress, insulin resistance, and inflamma-tion in hypertrophied 3t3-l1 adipocytes and activated raw 264.7 macrophages. Foods 8(326), 1–19. https://doi.org/10.3390/foods8080326
Pobierz

Opublikowane : 2022-05-19


Nurzyńska-Wierdak, R., & Krajewska, A. (2022). Aktywność biologiczna bzu czarnego (Sambucus nigra L.). Annales Horticulturae, 31(1), 17-35. https://doi.org/10.24326/ah.2022.1.2

Renata Nurzyńska-Wierdak  renata.nurzynska@up.lublin.pl
Katedra Warzywnictwa i Zielarstwa, Wydział Ogrodnictwa i Architektury Krajobrazu, Uniwersytet Przyrodniczy w Lublinie, 20–280 Lublin, ul. Doświadczalna 50a, Polska  Polska
https://orcid.org/0000-0002-7085-2212
Anna Krajewska 
Katedra Warzywnictwa i Zielarstwa, Wydział Ogrodnictwa i Architektury Krajobrazu, Uniwersytet Przyrodniczy w Lublinie, 20–280 Lublin, ul. Doświadczalna 50a, Polska  Polska




Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.

Przesyłając artykuł do publikacji, autor oświadcza, że posiada pełnię autorskich praw majątkowych oraz osobistych do utworu, a jego opublikowanie nie naruszy praw osób trzecich. Autor podpisuje oświadczenie o oryginalności dzieła i wkładzie poszczególnych osób. 

Przesłanie przez autora artykułu do publikacji w czasopiśmie „Annales Horticulturae” traktowane będzie jako udzielenie licencji do eksploatacji praw autorskich do artykułu na zasadach licencji Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 (CC BY-NC-ND 4.0)