Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin

Określenie szczytowych plonów czterech celulozowych roślin energetycznych we wschodniej części centralnej Polski

ROMAN MOLAS

USida R&D, Czardasza 12/2, 02-169 Warszawa, Poland
https://orcid.org/0000-0001-7586-9286

HALINA BORKOWSKA

Department of Plant Production Technology and Commodity Science, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland

ALEKSANDRA GŁOWACKA

Department of Plant Production Technology and Commodity Science, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
https://orcid.org/0000-0003-2835-7426

DOMINIKA SKIBA

Department of Plant Production Technology and Commodity Science, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
https://orcid.org/0000-0003-1572-1591


Abstrakt

Badania dotyczące plonowania i charakterystyki 4 gatunków wieloletnich roślin energetycznych rozmnażanych wegetatywnie przeprowadzono przez kolejnych 6 lat (2010–2015), od 5. do 10. roku uprawy. Były to 2 gatunki miskanta, ślazowiec pensylwański i dwa klony wierzby wiciowej (1047 i 1054) uprawiane obok siebie. Oceniano wysokość i liczbę pędów oraz plon i wilgotność biomasy. Największą gęstość pędów stwierdzono u miskanta cukrowego, natomiast największy plon osiągnął miskant olbrzymi. Biomasa wierzby i miskanta olbrzymiego charakteryzowała się największą wilgotnością (średnio 50%). Średnio dla 6 lat badań najwyższe pędy miał ślazowiec pensylwański. Warto podkreślić, że w długookresowych badaniach wydajność miskanta olbrzymiego i ślazowca pensylwańskiego była wysoka i stabilna. Ponadto nie stwierdzono istotnych różnic w średnich plonach tych 2 gatunków (Miscanthus × giganteusSida hermaphrodita). Uzyskane rezultaty mogą sprzyjać zwiększeniu różnorodności gatunkowej w uprawach wieloletnich roślin energetycznych.

Słowa kluczowe:

gatunki ligninocelulozowe, miskant, ślazowiec pensylwański, wierzba, plony

Adler P.R., Sanderson M.A., Boateng A.A., Weimer P.J., Jung H.-J.G., 2006. Biomass yield and biofuel quality of switchgrass harvested in fall or spring. Agron. J. 98, 1518–1525. http://dx.doi:10.2134/agronj2005.0351

Amaducci S., Facciotto G., Bergante S., Perego A., Serra P., Ferrarini A., Chimento C., 2017. Biomass production and energy balance of herbaceous and woody crops on marginal soils in the Po Valley. GCB Bioenergy 9, 31–45. http://doi.org/10.1111/gcbb.12341

Amougou N., Bertrand I., Cadoux S., Recous S., 2012. Miscanthus × giganteus leaf senescence, decomposition and C and N inputs to soil. GCB Bioenergy 4, 698–707. https://doi.org/10.1111/j.1757-1707.2012.01192.x

Arnoult S., Brancourt-Hulmel M., 2015. A Review on Miscanthus Biomass Production and Composition for Bioenergy Use: Genotypic and Environmental Variability and Implications for Breeding. Bioenerg. Res. 8, 502–526. https://doi.org/10.1007/s12155-014-9524-7

Borkowska H., Molas R., 2012. Two extremely different crops, Salix and Sida, as sources of renewable bioenergy. Biomass Bioenerg. 36, 234–240. https://doi.org/10.1016/j.biombioe.2011.10.025

Borkowska H., Molas R., 2013. Yield comparison of four lignocellulosic perennial energy crop species. Biomass Bioenerg. 51, 145–153. http://dx.doi.org/10.1016./j.biombioe.2013.01.017

Borkowska H., Molas R., Skiba D., 2015. Plonowanie ślazowca pensylwańskiego w wieloletnim użytkowaniu [Yielding of Virginia mallow in long-term use]. Acta Agrophys. 22(1), 5–15 [summary in English].

Christian D.G., Riche A.B., Yates N.E., 2008. Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind. Crops Prod. 28, 320–327. http://dx.doi.org/10.1016/j.indcrop.2008.02.009

Clifton-Brown J.C., Lewandowski I., Andersson B., Basch G., Christian D.G., Kjeldsen J.B., Jørgensen U., Mortensen J.V., Riche A.B., Schwarz K.-U., Tayebi K., Teixeira F., 2001. Performance of 15 Miscanthus genotypes in five sites Europe. Agron. J. 93, 1013–1019. http://dx.doi.org/10.2134/agronj2001.9351013x

Damm T., Pattathil S., Günl M., Jablonowski N.D., O’Neill M., Grün K.S., Grande P.M., Leitner W., Schurr U., Usadel B., Klose H., 2017. Insights into cell wall structure of Sida hermaphrodita and its influence on recalcitrance. Carbohydr. Polym. 168, 94–102. http://dx.doi.org/10.1016/j.carbpol.2017.03.062

Damm T., Grande P.M., Jablonowski N.D., Thiele B., Disko U., Mann U., Schurr U., Leitner W., Usadel B., de María P.D., Klose H., 2017. OrganoCat pretreatment of perennial plants: Synergies between a biogenic fractionation and valuable feedstocks. Bioresour. Technol. 244, 889–896. https://doi.org/10.1016/j.biortech.2017.08.027

Dubis B., Jankowski K.J., Załuski D., Bórawski P., Szempliński W., 2019. Biomass production and energy balance of Miscanthus over a period of 11 years: A case study in a large‐scale farm in Poland. GCB Bioenergy 11, 1187–1201. http://doi.org/10.1111/gcbb.12625

Gehren P. von, Gansberger A., Pichler W., Weigl M., Feldmeier S., Wopienka E., Bochmann G., 2019. A practical field trial to assess the potential of Sida hermaphrodita as a versatile, perennial bioenergy crop for Central Europe. Biomass Bioenerg. 122, 99–108. https://doi.org/10.1016/j.biombioe.2019.01.004

Jablonowski N.D., Kollmann T., Nabel M., Damm T., Klose H., Muller M., Blasing M., Seebold S., Kraft S., Kuperjans I., Dahmen M., Schurr U., 2017. Valorization of Sida (Sida hermaphrodita) biomass for multiple energy purposes. GCB Bioenergy 9, 202–214. http://doi.org/10.1111/gcbb.12346

Jensen E., Robson P., Farrar K., Jones S.T., Clifton-Brown J., Payne R., Donnison I., 2017. Towards Miscanthus combustion quality improvement: the role of flowering and senes-cence. GCB Bioenergy 9, 891–908. https://doi.org/10.1111/gcbb.12391

Jeżowski S., 2008. Yield traits of six clones of Miscanthus in the first 3 years following planting in Poland. Ind. Crops Prod. 27(1), 65–68. http://doi.org/10.1016/j.indcrop.2007.07.013

Kopp R.F., Abrahamson L.P., White E.H., Volk T.A., Nowak C.A., Fillhart R.C., 2001. Willow biomass production during ten successive annual harvests. Biomass Bioenerg. 20, 1–7. https://doi.org/10.1016/S0961-9534(00)00063-5

Kowalczyk-Juśko A., Kościk B., 2004. Produkcja biomasy miskanta cukrowego i spartiny preriowej w zróżnicowanych warunkach glebowych oraz możliwości jej konwersji na energię [The Miscanthus sacchariflorus and Spartina pectinata biomass production in different soil conditions and possibilities of its conversion into Energy]. Biul. IHAR 234, 213–218 [summary in English].

Kujawski J., Woolston D., Englert J.M., 1997. Propagation of Virginia Mallow (Sida hermaphrodita (L.) Rusby) from seeds, rhizomes. Restor. Manage. Notes 15, 193–194.

Lewandowski I., Clifton-Brown J.C., Scurlock J.M.O, Huisman W., 2000. Miscanthus: European experience with a novel Energy crop. Biomass Bioenerg. 19, 209–227. https://doi.org/10.1016/S0961-9534(00)00032-5

Maletta E., Martin-Sastre C., Ciria P., Perez P, Val A. del, Salvado A., Rovira L., Diez R., Serra J., Arechavala Y.G., Carrasco J.E., 2012. Perennial energy crops for semiarid lands in the Mediterranean: Elytrigia elongate. 20th European Biomass Conference and Exhibition, Milan, Italy. http://dx.doi:10.5071/20thEUBCE2012-1CO.9.4

Molas R., Borkowska H., Kupczyk A., Osiak J., 2018. Virginia Fanpetals (Sida) Biomass Can be Used to Produce High-Quality Bioenergy. Agron. J. 110, 24–29. http://doi.org/10.2134/agronj2018.01.0044

Oliveira J.A., West C.P., Afif E., Palencia P., 2017. Comparison of Miscanthus and Switchgrass Cultivars for Biomass Yield, Soil Nutrients, and Nutrient Removal in North-west Spain. Agron. J. 109, 122–130. http://dx.doi:10.2134/agronj2016.07.0440

Payne C., Wolfrum E.J., Nagle N., Brummer J.E., Hansen N., 2017. Evaluation of fifteen cultivars of cool-season perennial grasses as biofuel feedstocks using near-infrared. Agron. J. 109, 1923–1934. http://dx.doi:10.2134/agronj2016.09.0510

Pignon C.P., Spitz I., Sacks E.J., Jørgensen U., Kørup K., Long S.P., 2019. Siberian Miscanthus sacchariflorus accessions surpass the exceptional chilling tolerance of the most widely cultivated clone of Miscanthus × giganteus. GCB Bioenergy 11, 883–894. http://doi.org/10.1111/gcbb.12599

Rickett H.W., 1963. The new field book of American wild flowers. G.P. Putnam’s Sons, New York, pp. 414.

Sanford G.R., Oates L.G., Jasrotia P., Thelen K.D., Robertson G.P., Jackson R.D., 2016. Comparative productivity of alternative cellulosic bioenergy cropping systems in the North Central USA. Agric. Ecosyst. Environ. 216, 344–355. https://doi.org/10.1016/j.agee.2015.10.018

Skowera B., 2014. Changes of hydrothermal conditions in the Polish area (1971–2010). Fragm. Agron. 31, 74–87.

Skowera B., Puła J., 2004. Skrajne warunki pluwiotermiczne w okresie wiosennym na obszarze Polski w latach 1971–2000 [Pluviometric extreme conditions in spring season in Poland in the years 1971–2000]. Acta Agrophys. 3(1), 171–177 [summary in English].

Spooner D.M., Cusick A.W., Hall G.F., Baskin J.M., 1985. Observations on the distribution and ecology of Sida hermaphrodita (L.) Rusby (Malvaceae). Sida Contrib. Bot. 11, 215–225.

Stolarski M., Szczukowski S., Tworkowski J., Grzelczyk M., 2005. Produktywność wierzb krzewiastych pozyskiwanych w jednorocznych cyklach zbioru [Productivity of willow short rotation coppice in one-year cuting cycles]. Acta Sci. Pol. Agricultura 4, 141–151 [summary in English].

Stolarski M., Szczukowski S., Tworkowski J., Krzyżaniak M., Załuski D., 2019. Willow production during 12 consecutive years – The effects of harvest rotation, planting density and cultivar on biomass yield. GCB Bioenergy 11, 635–656. http://doi.org/10.1111/gcbb.12583

Styszko L., Fijałkowska D., 2016. Wpływ odmian i klonów wierzby oraz gęstości sadzenia na plon biomasy na cele energetyczne w 8 roku uprawy [Impact of varieties, clones and planting density of willow on yield of biomass for energy purposes during 8th year of cultivation]. JCEEA 63, 461–468 [summary in English]. http://doi.org/10.7862/rb.2016.229

Szczukowski S., Tworkowski J., Stolarski M., Fortuna W., 2009. Plon biomasy wierzby pozyskanej w krótkich rotacjach zbioru na plantacji przemysłowej [The willow biomass yield obtained in short harvest rotation on an industrial plantation]. Fragm. Agron. 26, 146–155 [summary in English].

Xu J., Gauder M., Gruber S., Claupein W., 2017. Yields of Annual and Perennial Energy Crops in a 12-year Field Trial. Agron. J. 109, 1–11. http://doi.org/10.2134/agronj2015.0501


Opublikowane
01-04-2020



ROMAN MOLAS 
USida R&D, Czardasza 12/2, 02-169 Warszawa, Poland https://orcid.org/0000-0001-7586-9286
HALINA BORKOWSKA 
Department of Plant Production Technology and Commodity Science, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
ALEKSANDRA GŁOWACKA 
Department of Plant Production Technology and Commodity Science, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland https://orcid.org/0000-0003-2835-7426
DOMINIKA SKIBA 
Department of Plant Production Technology and Commodity Science, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland https://orcid.org/0000-0003-1572-1591



Licencja

Artykuły są udostępniane na zasadach CC BY 4.0 (do 2020 r. na zasadach CC BY-NC-ND 4.0)..
Przysłanie artykułu do redakcji oznacza, że nie był on opublikowany wcześniej i nie jest rozpatrywany do publikacji gdzie indziej.

Autor podpisuje oświadczenie o oryginalności dzieła, wkładzie poszczególnych osób i źródle finansowania.

 

Czasopismo Agronomy Science przyjęło politykę samoarchiwizacji nazwaną przez bazę Sherpa Romeo drogą niebieską. Od 2021 r. autorzy mogą samoarchiwizować postprinty artykułów oraz wersje wydawnicze (zgodnie z licencją CC BY). Artykuły z lat wcześniejszych (udostępniane na licencji CC BY-NC-ND 4.0) mogą być samoarchiwizowane tylko w wersji wydawniczej.

 


Inne teksty tego samego autora

1 2 3 > >>