Biosensory i nanobiosensory – nowoczesne narzędzia w detekcji fitopatogenów
Agata Święciło
Katedra Mikrobiologii Środowiskowej, Wydział Agrobioinżynierii, Uniwersytet Przyrodniczy w Lublinie, ul. Leszczyńskiego 7, 20-069 Lublin, PolskaAnna Krzepiłko
Katedra Biotechnologii, Mikrobiologii i Żywienia Człowieka, Wydział Nauk o Żywności i Biotechnologii, Uniwersytet Przyrodniczy w Lublinie, ul. Skromna 8, 20-704 Lublin, PolskaKatarzyna Matyszczuk
Szkoła Doktorska UP Lublin, Katedra Biotechnologii, Mikrobiologii i Żywienia Człowieka, Wydział Nauk o Żywności i Biotechnologii, Uniwersytet Przyrodniczy w Lublinie, ul. Skromna 8, 20-704 Lublin, PolskaMarta Sowińska
Kolegium Nauk Medycznych, Uniwersytet Rzeszowski, al. Kopisto 2a, 35-959 Rzeszów, PolskaAbstrakt
Celem pracy była analiza danych literaturowych z zakresu rozwiązań konstrukcyjnych biosensorów wykorzystywanych w detekcji fitopatogenów. Omówiono ogólne zasady działania biosensorów i mechanizmy generowania sygnału analitycznego. Szczególną uwagę zwrócono na biosensory zawierające w swojej budowie nanomateriały, zw. nanobiosensorami. Nanomateriały mogą wchodzić w skład warstwy receptorowej biosensora, przetwornika oraz obu tych elementów. Stabilizują one i przytwierdzają do powierzchni przetwornika cząsteczki receptorów biologicznych lub pełnią rolę znaczników wzmacniających sygnał analityczny. Dzięki temu w porównaniu do biosensorów bazujących na standardowych rozwiązaniach charakteryzują się lepszymi parametrami pracy. Nanobiosensory wykorzystywane w fitopatologii to przeważnie genosensory (zawierające w warstwie receptorowej aptamery, czyli jednoniciowe oligonukleotydy DNA, ssDNA) lub immunosensory (zawierające przeciwciała zdolne do rozpoznawania specyficznych struktur bakterii fitopatogennych lub białek płaszcza wirusów roślinnych). W obu typach urządzeń stosuje się zwykle elektrochemiczną lub optyczną transdukcję sygnału biologicznego. Zacznie rzadziej są spotykane genosensory z transdukcją mikrograwimetryczną, opierającą się na technice mikrowagi kwarcowej. Zaprezentowane biosensory i nanobiosensory charakteryzowały się w warunkach laboratoryjnych dobrymi parametrami analitycznymi, co wskazuje na ich duży potencjał aplikacyjny.
Słowa kluczowe:
biosensory, nanobiosensory, detekcja, fitopatogenyBibliografia
Bhattacharjee A., Roy T.S., Haque Md.N., Pulok Md.A.I., Rahman Md.M., 2014. Changes of sugar and starch levels in ambient stored potato derived from TPS. Int. J. Sci. Res. Public. 4(11), 1–5.
Cai H., Xu Y., Zhu N., He P., Fang Y., 2002. An electrochemical DNA hybridization detection assay based on a silver nanoparticle label. Analyst. 127(6), 803–808. https://doi.org/10.1039/b200555g DOI: https://doi.org/10.1039/b200555g
Cassedy A., Mullins E., O’Kennedy R., 2020. Sowing seeds for the future: the need for on-site plant diagnostics. Biotechnol. Adv. 39. https://doi.org/107358. doi:10.1016/j DOI: https://doi.org/10.1016/j.biotechadv.2019.02.014
Cebula Z., Zoledowska S., Dziąbowska K., Skwarecka M., Malinowska N., Białobrzeska W., Czaczyk E., Siuzdak K., Sawczak M., Bogdanowicz R., Nidzworski D., 2019. Detection of the plant pathogen Pseudomonas syringae pv. lachrymans on antibody-modified gold elec-trodes by electrochemical impedance spectroscopy. Sensors 19. https://doi.org/10.3390/s19245411 DOI: https://doi.org/10.3390/s19245411
Chaudhary M., Verma S., Kumar A., Basavaraj Y.B., Tiwari P., Singh S., Chauhan S.K., Ku-mar P., Singh S.P., 2021. Graphene oxide based electrochemical immunosensor for rapid detection of groundnut bud necrosis orthotospovirus in agricultural crops. Talanta 235, 122717. https://doi.org/10.1016/j.talanta.2021.122717 DOI: https://doi.org/10.1016/j.talanta.2021.122717
Dickert F.L., Hayden O., Bindeus R., Mann K.J., Blaas D., Waigmann E., 2004. Bioimprinted QCM sensors for virus detection-screening of plant sap. Anal. Bioanal. Chem. 378, 1929–1934. https://doi.org/10.1007/s00216-004-2521-5 DOI: https://doi.org/10.1007/s00216-004-2521-5
Dubs M.C., Altschuh D., Van Regenmortel M.H.V., 1992. Mapping of viral epitopes with conformationally specific monoclonal antibodies using biosensor technology. J. Chroma-togr. A. 597 (1–2), 391–396. https://doi.org/10.1016/0021-9673(92)80136-i DOI: https://doi.org/10.1016/0021-9673(92)80136-I
Dyussembayev K., Sambasivam P., Bar I., Brownlie J., Shiddiky M., Ford R., 2021. Biosensor technologies for early detection and quantification of plant pathogens. Front. Chem. 9, https://doi.org/articles/10.3389/fchem.2021.63624
Dyussembayev K., Sambasivam P., Bar I., Brownlie J.C., Shiddiky M.J.A., Ford R., 2021. Biosensor technologies for early detection and quantification of plant pathogens. Front. Chem. 9. https://doi.org/10.3389/fchem.2021.636245 DOI: https://doi.org/10.3389/fchem.2021.636245
Eun A.J.C., Huang L., Chew F.T., Li S.F.Y., Wong S.M., 2002. Detection of two orchid virus-es using quartz crystal microbalance-based DNA biosensors. Phytopathology 92, 654–658. DOI: https://doi.org/10.1094/PHYTO.2002.92.6.654
Eun A.J.C., Wong S.M., 2000. Molecular beacons. A new approach to plant virus detection. Phytopathology 90, 269–275. DOI: https://doi.org/10.1094/PHYTO.2000.90.3.269
Fang Y., Ramasamy R.P., 2015. Current and prospective methods for plant disease detection. Biosensors 4, 537‒561. https://doi.org/10.3390/bios5030537 DOI: https://doi.org/10.3390/bios5030537
Freitas T.A., Proença C.A., Baldo T.A., Materón E.M., Wong A., Magnani R.F., Faria R.C., 2019. Ultrasensitive immunoassay for detection of Citrus tristeza virus in citrus sample using disposable microfluidic electrochemical device. Talanta 205. https://doi.org/10.1016/j.talanta.2019.07.005Gutiérrez-Aguirre I., Hodnik V., Glais L., Ru-par M., Jacquot E., Anderluh G., Ravnikar M., 2014. Surface plasmon resonance for moni-toring the interaction of Potato virus Y with monoclonal antibodies. Anal Biochem. 447, 74–81. https://doi.org/10.1016/j.ab.2013.10.032 DOI: https://doi.org/10.1016/j.ab.2013.10.032
Haji-Hashemi H., Habibi M.M., Safarnejad M.R., Norouzi P., Ganjali M.R., 2018. Label-free electrochemical immunosensor based on electrodeposited prussian blue and gold nanopar-ticles for sensitive detection of citrus bacterial canker disease. Sens. Actuators B Chem. 275, 61–68. https://doi.org/10.1016/j.snb.2018.07.148 DOI: https://doi.org/10.1016/j.snb.2018.07.148
Haji-Hashemi H., Safarnejad M.R., Norouzi P., Ebrahimi M., Shahmirzaie M., Ganjal, M.R., 2019. Simple and effective label free electrochemical immunosensor for Fig mosaic virus detection. Anal. Biochem. 566, 102–106. https://doi.org/10.1016/j.ab.2018.11.017 DOI: https://doi.org/10.1016/j.ab.2018.11.017
Jarocka U., Wasowicz M., Radecka H., Malinowski T., Michalczuk L., Radecki J., 2011. Imped-imetric immunosensor for detection of plum pox virus in plant extracts. Electroanalysis 23, 2197–2204. https://doi.org/10.1002/elan.201100152 DOI: https://doi.org/10.1002/elan.201100152
Jian Y.S., Lee C.H., Jan F.J., Wang G.J., 2018. Detection of Odontoglossum Ringspot Virus infected Phalaenopsis using a nano-structured biosensor. J. Electrochem. Soc. 165. https://doi.org/10.1149/2.0351809jes] DOI: https://doi.org/10.1149/2.0351809jes
Jin L., Yang K., Yao K., Zhang S., Tao H., Lee ST., Liu Z., Peng R., 2012. Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability. ACS Nano. 6( 6), 4864–4875. DOI: https://doi.org/10.1021/nn300217z
Kaur R., Sharma S.K., Tripathy S.K., 2019. Advantages and limitations of environmental nanosensors. W: Deep A., Kumar S. (red.), Advances in nanosensors for biological and environmental analysis. Elsevier. DOI: https://doi.org/10.1016/B978-0-12-817456-2.00007-3
Khaledian S., Nikkhah M., Shams-bakhsh M., Hoseinzadeh S., 2017. A sensitive biosensor based on gold nanoparticles to detect Ralstonia solanacearum in soil. J. Gen. Plant Pathol. 83, –-9. https://doi.org/10.1007/s10327-017-0721-z DOI: https://doi.org/10.1007/s10327-017-0721-z
Khater M., Alfredo de la E.M., Daniel Q.G., Merkoçi A., 2019. Electrochemical detection of plant virus using gold nanoparticle-modified electrodes. Anal. Chim. Acta. 1046, 123–131. https://doi.org/10.1016/j.aca.2018.09.031 DOI: https://doi.org/10.1016/j.aca.2018.09.031
Korotkaya E.V., 2014. Biosensors: design, classification, and applications in the food industry. Foods Raw Mater. 2, 161–171. https://doi.org/10.12737/5476 DOI: https://doi.org/10.12737/5476
Lau H., Wu H., Wee E., Trau M., Wang Y., Botella J.R., 2017. Specific and sensitive isother-male electrochemical biosensor for plant pathogen DNA detection with colloidal gold na-noparticles as probes. Sci Rep. 7, 38896. https://doi.org/10.1038/srep38896 DOI: https://doi.org/10.1038/srep38896
Lautner G., Balogh Z., Bardoczy V., Meszaros T., Gyurcsanyi R.E., 2010. Aptamer-based biochips for label-free detection of plant virus coat proteins by SPR imaging. Analyst. 135. 918–926. https://doi.org/10.1039/b922829b DOI: https://doi.org/10.1039/b922829b
Lee E., Yoon Y.S., Kim D.J., 2018. Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS Sens. 3, 2045–2060, https://doi.org/10.1021/acssensors.8b01077 DOI: https://doi.org/10.1021/acssensors.8b01077
Leonard P., Hearty S., Brennan J., Dunne L., Quinn J., Chakraborty T., O'Kennedy R., 2003. Advances in biosensors for detection of pathogens in food and water. Enzyme Microb. Technol. 32, 3–13. https://doi.org/10.1016/S0141-0229(02)00232-6 DOI: https://doi.org/10.1016/S0141-0229(02)00232-6
Lin H.Y., Huang C.H., Lu S.H., Kuo I.T., Chau, L.K., 2014. Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosens. Bioe-lectron. 51, 371–378. https://doi.org/10.1016/j.bios.2013.08.009 DOI: https://doi.org/10.1016/j.bios.2013.08.009
Liu S., Yuan L., Yue X., Zheng Z., Tang Z., 2008. Recent advances in nanosensors for organ-ophosphate pesticide detection. Adv. Powder Technol. 19, 419–441. https://doi.org/10.1016/S0921-8831(08)60910-3 DOI: https://doi.org/10.1163/156855208X336684
Luo X.L., Xu J.J., Zhao W., Chen H.Y., 2004. A novel glucose ENFET based on the special reactivity of MnO2 nanoparticles. Biosens. Bioelectron. 19(10), 1295–1300. https://doi.org:10.1016/j.bios.2003.11.019 DOI: https://doi.org/10.1016/j.bios.2003.11.019
Malecka K., Michalczuk L., Radecka H., Radecki J., 2014. Ion-channel genosensor for the detection of specific DNA sequences derived from plum pox virus in plant extracts. Sen-sors 14, 18611–18624. https://doi.org/10.3390/s141018611 DOI: https://doi.org/10.3390/s141018611
Martinelli F., Scalenghe R., Davino S., Panno S., Scuderi G., Ruisi P., Villa P., Stroppiana D., Boschetti M., Goulart L.R., Davis C.E., Dandekar A.M., 2015. Advanced methods of plant disease detection. A review. Agron. Sustain. Dev. 35, 1–25. https://doi.org:10.1007/s13593-014-0246-1 DOI: https://doi.org/10.1007/s13593-014-0246-1
Papadakis G., Skandalis N., Dimopoulou A., Glynos P., Gizeli E., 2015. Bacteria Murmur: Application of an acoustic biosensor for plant pathogen detection. PLoS ONE 10(7), e0132773. https://doi.org/10.1371/journal.pone.0132773 DOI: https://doi.org/10.1371/journal.pone.0132773
Puttharugsa C., Wangkam T., Huangkamhang N., Gajanandana O., Himananto O., Sutapun B., Amarit R., Somboonkaew A., Srikhirin T., 2011. Development of surface plasmon res-onance imaging for detection of Acidovorax avenae subsp. citrulli (Aac) using specific monoclonal antibody. Biosens. Bioelectron., 26(5), 2341–2346. https://doi.org/10.1016/j.bios.2010.10.007 DOI: https://doi.org/10.1016/j.bios.2010.10.007
Rad F., Mohsenifar A., Tabatabaei M., Safarnejad M.R., Shahryari F., Safarpour, H., Foroutan A., Mardi M., Davoudi D., Fotokian M., 2012. Detection of Candidatus Phytoplasma au-rantifolia with a quantum dots fret-based biosensor. J. Plant Pathol. 94, 525–534. https://doi.org/10.4454/JPP.FA.2012.054
Razmi A., Golestanipour A., Nikkhah M., Bagheri A., Shamsbakhsh M., Malekzadeh-Shafaroudi S., 2019. Localized surface plasmon resonance biosensing of Tomato Yellow Leaf Curl Virus. J. Virol. Methods 267, 107. https://doi.org/10.1016/j.jviromet.2019.02.004 DOI: https://doi.org/10.1016/j.jviromet.2019.02.004
Regiart M., Fernández-Baldo M.A., Villarroel-Rocha J., Messina G.A., Bertolino F.A., Sapag K., 2017. Microfluidic immunosensor based on mesoporous silica platform and CMK-3/poly-acrylamide-co-methacrylate of dihydrolipoic acid modified gold electrode for cancer biomarker detection. Anal. Chim Acta 963, 83–92. https://doi.org/10.1016/j.aca.2017.01.029 DOI: https://doi.org/10.1016/j.aca.2017.01.029
Renneberg R., Pfeiffer D., Lisdat F., 2008. Biosensing for the 21st Century. Series: Advances in Biochemical Engineering/Biotechnology 109, 1–18. DOI: https://doi.org/10.1007/978-3-540-75201-1
Rodriguez-Mozaz S., Marco M.P., Alda M.J.L., Barceló D., 2004. Biosensors for environmental applications: future development trends. Pure Appl. Chem. 76, 723–752. https://doi.org/10.1351/pac200476040723 DOI: https://doi.org/10.1351/pac200476040723
Rogers K.R., 2006. Recent advances in biosensor techniques for environmental monitoring. Anal. Chim. Acta 568, 222–231. https://doi.org/10.1016/j.aca.2005.12.067 DOI: https://doi.org/10.1016/j.aca.2005.12.067
Sarcina L., Macchia E., Loconsole G., D’Attoma G., Saldarelli P., Elicio V., Palazzo G., Torsi L., 2021. Surface plasmon resonance assay for label-free and selective detection of Xylella fastidiosa. Adv. NanoBiomed Res. 1, 2100043. https://doi.org/10.1002/anbr.202100043 DOI: https://doi.org/10.1002/anbr.202100043
Schofield D.A., Bull C.T., Rubio I., Wechter W.P., Westwater C. Molineux I.J., 2013. Light-tagged” bacteriophage as a diagnostic tool for the detection of phytopathogens. Bioengi-neered 4(1), 50–54. https://doi.org/10.4161/bioe.22159 DOI: https://doi.org/10.4161/bioe.22159
Sharma P., Pandey V., Sharma M.M.M., Patra A., Singh B., Mehta S., Husen A., 2021. A review on biosensors and nanosensors application in agroecosystems. Nanoscale Res Lett. 16, 136. https://doi.org/10.1186/s11671-021-03593-0 DOI: https://doi.org/10.1186/s11671-021-03593-0
Subrahmanyam S., Piletsky S.A., Turner, A.P.F., 2002. Application of natural receptors in sensors and assays. Anal. Chem. 74, 942–952. https://doi.org/.1021/AC025673+ DOI: https://doi.org/10.1021/ac025673+
Tichoniuk M. 2010. Elektrochemiczny biosensor DNA do wykrywania bakterii chorobotwór-czych w żywności. Zeszyty Naukowe. Uniwersytet Ekonomiczny. Poznań, 183, 27–41.
Tolba M., Ahmed M.U., Tlili C., Eichenseher F., Loessner M.J., Zourob M., 2012. A bacterio-phage endolysin-based electrochemical impedance biosensor for the rapid detection of Lis-teria cells. Analyst 137, 5749–5756. https://doi.org/10.1039/c2an35988j DOI: https://doi.org/10.1039/c2an35988j
Vaseghi A., Safaie N., Bakhshinejad B., Mohsenifar A., Sadeghizadeh M., 2013. Detection of Pseudomonas syringae pathovars by thiol-linked DNA–Gold nanoparticle probes. Sens. Actuators B Chem. 181, 644–651. https://doi.org/10.1016/J.SNB.2013.02.018 DOI: https://doi.org/10.1016/j.snb.2013.02.018
Wang Y.X., Ye Z.Z., Ying Y.B., 2012. New trends in impedimetric biosensors for the detec-tion of foodborne pathogenic bacteria. Sensors 12, 3449–3471. https://doi.org/10.3390/s120303449 DOI: https://doi.org/10.3390/s120303449
Xu K., Huang J., Ye Z., Ying Y., Li Y., 2009. Recent development of nanomaterials used in DNA biosensors. Sensors 9, 5534–5557. https://doi.org/10.3390/s90705534 DOI: https://doi.org/10.3390/s90705534
Yao K.S,. Li S.J., Tzeng K.C., Cheng T.C., Chang C.Y., Chiu C.Y., Liao C.Y., Hsu J.J., Lin Z.P., 2009. Fluorescence silica nanoprobe as a biomarker for rapid detection of plant path-ogens. Adv. Mater. Res. 79, 513–551. DOI: https://doi.org/10.4028/www.scientific.net/AMR.79-82.513
Zeng C., Huang X., Xu J., Li G., Ma J., Ji H.-F., Zhu S., Chen H., 2013. Rapid and sensitive detection of maize chlorotic mottle virus using surface plasmon resonance-based biosen-sor. Anal. Biochem. 440(1), 18–22. https://doi.org/10.1016/j.ab.2013.04.026 DOI: https://doi.org/10.1016/j.ab.2013.04.026
Zhang M., Chen W., Chen X., Zhang Y., Lin X., Wu Z., Li M., 2013. Multiplex immunoas-says of plant viruses based on functionalized upconversion nanoparticles coupled with immunomagnetic separation. J. Nanomater. 1–8. https://doi.org/10.1155/2013/317437 DOI: https://doi.org/10.1155/2013/317437
Zhao W., Lu J., Ma W., Xu C., Kuang H., Zhu S., 2011. Rapid on-site detection of Acidovorax avenae subsp. citrulli by gold-labeled DNA strip sensor. Biosens. Bioelectron. 15, 26(10), 4241–4244. https://doi.org/10.1016/j.bios.2011.04.004 DOI: https://doi.org/10.1016/j.bios.2011.04.004
Zhao Y., Liu L., Kong D., Kuang H., Wang L., Xu C., 2014. Dual amplified electrochemical immunosensor for highly sensitive detection of Pantoea stewartii sbusp. stewartii. ACS Appl. Mater. Interfaces. 6, 23, 21178–21183. https://doi.org/10.1021/am506104r DOI: https://doi.org/10.1021/am506104r
Katedra Mikrobiologii Środowiskowej, Wydział Agrobioinżynierii, Uniwersytet Przyrodniczy w Lublinie, ul. Leszczyńskiego 7, 20-069 Lublin, Polska
Katedra Biotechnologii, Mikrobiologii i Żywienia Człowieka, Wydział Nauk o Żywności i Biotechnologii, Uniwersytet Przyrodniczy w Lublinie, ul. Skromna 8, 20-704 Lublin, Polska
Szkoła Doktorska UP Lublin, Katedra Biotechnologii, Mikrobiologii i Żywienia Człowieka, Wydział Nauk o Żywności i Biotechnologii, Uniwersytet Przyrodniczy w Lublinie, ul. Skromna 8, 20-704 Lublin, Polska
Kolegium Nauk Medycznych, Uniwersytet Rzeszowski, al. Kopisto 2a, 35-959 Rzeszów, Polska
Licencja

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.
Artykuły są udostępniane na zasadach CC BY 4.0 (do 2020 r. na zasadach CC BY-NC-ND 4.0)..
Przysłanie artykułu do redakcji oznacza, że nie był on opublikowany wcześniej i nie jest rozpatrywany do publikacji gdzie indziej.
Autor podpisuje oświadczenie o oryginalności dzieła, wkładzie poszczególnych osób i źródle finansowania.
Samoarchiwizacja
Czasopismo Agronomy Science przyjęło politykę samoarchiwizacji nazwaną przez bazę Sherpa Romeo drogą niebieską. Od 2021 r. autorzy mogą samoarchiwizować postprinty artykułów oraz wersje wydawnicze (zgodnie z licencją CC BY). Artykuły z lat wcześniejszych (udostępniane na licencji CC BY-NC-ND 4.0) mogą być samoarchiwizowane tylko w wersji wydawniczej.