Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin

Perspektywy stosowania pestycydów w rolnictwie

Piotr Barbaś

Department of Potato Agronomy, Institute of Plant Breeding and Acclimatization – National Re-search Institute, Jadwisin Branch, Szaniawskiego 15, 05-140 Serock, Poland

Hakiye Aslan

Vocational School of Food, Agriculture and Livestock, Bingöl University, 12000 Bingöl, Turkey

Imran Aslan

Department of Occupational Health and Safety, Bingol University, Bingol, Turkey

Dominika Skiba

Department of Plant Production Technology and Commodities Science, University of Life Science in Lublin, Akademicka 15, 20-950 Lublin, Poland

Olutosin Ademola Otekunrin

Department of Agricultural Economics and Farm Management, Federal University of Agriculture, Abeokuta (FU NAAB) 110124

Barbara Helena Sawicka

Department of Plant Production Technology and Commodities Science, University of Life Science in Lublin, Akademicka 15, 20-950 Lublin, Poland


Concerns about food safety issues have put considerable pressure on pesticide producers in Europe and worldwide to reduce the levels of pesticide residues in food. The aim of this work is to assess the use of traditional pesticides and their effects, to present perspectives in this field and to identify regulatory needs for their use and implementation. The work is based on a systematic review in which the research problem was defined, primary sources were selected and critically appraised, data were collected, analysed and evaluated, and conclusions were formulated. The state of the pesticide market and the current legal requirements for risk assessment in relation to exposure to chemical substances were reviewed. Food safety issues are presented through the prism of pesticide residues in food. Their widespread use and considerable persistence have made them ubiquitous in the natural environment and their residues pose a threat to the environment and to human and animal health. It has been shown that the most important factor influencing the search for new tools to control diseases and pests of crops is the progressive development of resistance of these populations to currently used pesticides. Various alternatives to the phasing out of synthetic pesticides in the form of natural products are therefore being developed to support the development of the natural products market.

Słowa kluczowe:

bioherbicydy, bioinsektycydy, naturalne fitotoksyny, feromony, toksyczność pestycydów

Bioherbicides Market – global industry analysis and forecast (2022–2029), 2022.

Arnason J.T., Sims S.R., Scott I.M., 2012. Natural products from plants as insecticides. Encyclope-dia of Life Support Systems (EOLSS), 1–8.

Bailey K.L., Pitt W.M., Falk S., Derby J., 2011. The effects of Phoma macrostoma on nontarget plant and target weed species. Biol. Control 58(3), 379–386. DOI:

Bannon J.S., 1988. CASSTTM herbicide (Alternaria cassiae): a case history of a mycoherbicide. Am. J. Alt. Agri. 3, 73–76. DOI:

Barr D.B., Bravo R., Weerasekera G., Caltabiano L.M., Whitehead R.D., Olsson A.O., Caudill S.P., Schober S.E., Pirkle J.L. Sampson E.J., 2004. Concentrations of dialkyl phosphate me-tabolites of organophosphorus pesticides in the U.S. population. Environ. Health Perspect. 112 (2), 186–200. DOI:

Batish D.R., Setia N., Singh H.P., Kohli R.K., 2004. Phytotoxicity of lemon-scented eucalypt oil and its potential use as a bioherbicide. Crop Prot. 23(12), 1209–1214. DOI:

Bewick T.A., Porter J.C., Ostrowski R.C., 2000. SmolderTM: A bioherbicide for suppression of dodder (Cuscuta spp.). Proc. South. Weed Sci. Soc. Abstracts 53, 152.

Boeke S.J., Boersma M.G., Alink G.M., Van Loon J.J., Van Huis A., Dicke M., Rietjens I.M., 2004. Safety evaluation of neem (Azadirachta indica) derived pesticides. J. Ethnopharmacol. 94(1), 25–41. DOI:

Boyd N.S., Brennan E.B., Fennimore S.A., 2006. Stale seedbed techniques for organic vegetable production. Weed Technol. 20, 1052–1057. DOI:

Boyetchko S.M., Bailey K.L., Hynes R.K., Peng G., 2007. Development of an inundated mycoherbicide: BioMal®. In: C. Vincent, M.S. Goettel., G. Lazarovits (eds.), Biological control: global perspective. CABI Publishing, Wallingford, 274–283. DOI:

Busi R., Vila-Aiub M.M., Beckie H.J., Gaines T.A., Goggin D.E., Kaundun S.S., Lacoste M., Neve P., Nissen S.J., Norsworthy J.K., Renton M., Shaner D.L., Tranel P.J., Wright T., Yu Q., Powles S.B., 2013. Herbicide-resistant weeds: from research and knowledge to future needs. Evol. Appl. 6(8), 1218–1221. DOI:

Campe R., Hollenbach E., Kämmerer L., Hendriks J., Höffken H.W., Kraus H., Lerchl J., Mietzner T., Tresch S., Witschel M., Hutzler J., 2018. A new herbicidal site of action: Cinmethylin binds to acyl-ACP thioesterase and inhibits plant fatty acid biosynthesis. Pestic. Biochem. Physiol. 148, 116–125. DOI:

Cartwright K., Boyette D., Roberts M., 2010. Lockdown®: Collego® bioherbicide gets a second act. Phytopathology 100, S162.

Charudattan R., Hiebert E., 2007. A plant virus as a bioherbicide for tropical soda apple, Solanum viarum. Outlooks Pest Manag. 18(4), 167. DOI:

Chaubey M.K., 2012. Responses of Tribolium castaneum (Coleoptera: Tenebrionidae) and Sitophi-lus oryzae (Coleoptera: Curculionidae) against essential oils and pure compounds. Herba Pol. 58(3), 33–45.

Dayan F.E., Duke S.O., Grossmann K., 2010. Herbicides as probes in plant biology. Weed Sci. 58(3), 340–350. DOI:

Dolinsek J.A., Kovac M., Zel J., Camloh M., 2007. Pyrethrum (Tanacetum cinerariifolium) from the northern Adriatic as a potential source of natural insecticide. Annales: Series Historia Natu-ralis 17(1), 39–46.

Duke S.O., 2005. Taking stock of herbicide-resistant crops ten years after introduction. Pest Manag. Sci. 61(3) Special Issue: Herbicide‐resistant crops from biotechnology, 211–218. DOI:

Duke S.O., Powles S.B., 2008. Glyphosate: a once-in-a-century herbicide. Pest Manag. Sci. 64(4) Special Issue: Glyphosate‐Resistant weeds and crops, 319–325. DOI:

Duke S.O., Evidente A., Vurro M., 2019. Natural products in pest management: Innovative ap-proaches for increasing their use. Pest Manag. Sci. 75(9) Special Issue: Natural products in pest management, 2299–2300. DOI:

Duke S.D., Pan Z., Bajsa-Hirschel J., Boyette C.D., 2022. The potential future roles of natural compounds and microbial bioherbicides in weed management in crops. Adv. Weed Sci. 40(spe1), e020210054.;40:seventy-five003 DOI:;40:seventy-five003

Directive of the European Parliament and of the Council No. 2009/128/EC of 21 October 2009 established a framework for Community action for the sustainable use of pesticides (Dz.U. UE L 309 z 21.11.2009), 2009:309:0071:0086:pl:PDF [in Polish].

European Commission, 2020. Chemicals strategy for sustainability towards a toxic-free environ-ment, Brussels, 14.10.2020,

FAO, 2022. World Food and Agriculture − Statistical Pocketbook 2022. Rome. DOI:

FAOSTAT, 2022. FAOSTAT Pesticides Use – Country Notes, June 2022,

Frabboni L., Tarantino A., Petruzzi F., Disciglio G., 2019. Bio-herbicidal effects of oregano and rosemary essential oils on chamomile (Matricaria chamomilla L.) crop in organic farming sys-tem. Agronomy 9(9), 475. DOI:

Freire C., Koifman R.J., Koifman S., 2015. Hematological and hepatic alterations in Brazilian popu-lation heavily exposed to organochlorine pesticides. J. Toxicol. Environ. Health, Part A, 78(8), 534–548. DOI:

Gaines T.A., Duke S.O., Morran S., Rigon C., Tranel P.J., Küpper P.J., 2020. Mechanisms of evolved herbicide resistance. J. Biol. Chem. 295(30), 10307–10330. DOI:

Gale V., Goutler K., 2013. Field evaluation of a bioherbicide for control of parkinsonia (Parkin-sonia aculeate) in Australia. Proceedings of 19th Australasian Plant Pathology Conference, Auckland, New Zealand. Adelaide: Australasian Plant Pathology Society, pp. 43.

Góral J., Rembisz W., 2017. Produkcja w rolnictwie w kontekście ochrony środowiska [Production in agriculture in the context of environmental protection]. Rocz. Nauk. Ekonom. Rol. Rozw. Obsz. Wiej. 104(1), 7–21. 10.22630/RNR.2017.104.1.1 [in Polish]. DOI:

Graña E., Días-Tielas C., Sánchez-Moreiras A.M., Reigosa M.J., Celiero M., Abagyan R., 2020. Transcriptome and binding data indicate that citral inhibits single strand DNA binding proteins. Physiol. Plant. 169, 99–109, DOI:

Grotowska M., Janda K., Jakubczyk K., 2018. Wpływ pestycydów na zdrowie człowieka [Effect of pesticides on human health]. Pomeranian J. Life Sci. 64(2), 42–50 [in Polish]. DOI:

Grudzińska M., Czerko, Z., 2016. Olejki eteryczne z mięty pieprzowej i kminku jako naturalne inhibitory kiełkowania bulw ziemniaka oraz ich wpływ na cechy sensoryczne bulw po ugo-towaniu [Essential oils of peppermint and caraway as natural sprout inhibitors in potato tubers during storage and their effect on sensory quality after cooking]. Annales UMCS, Sec. E, Agric. 71(1), 1–12. [in Polish]. DOI:

Grzyb A., Waraczewska Z., Niewiadomska A., Wolna-Maruwka A., 2019. Czym są biopreparaty i jakie jest ich zastosowanie? [What are biopreparations and what is their use?]. Nauka Przyr. Tech. 13(2), 65–76. [in Polish].

Hassaan M.A., El Nemr A., 2020. Pesticides pollution: Classifications, human health impact, extrac-tion and treatment techniques. Egypt. J. Aquat. Res. 46(3), 207–220. DOI:

1016/j.ejar.2020.08.007 DOI:

Hazrati H., Saharkhiz M.J., Moein M., Khoshghalb H., 2018, Phytotoxic effects of several essential oils on two weed species and Tomato. Biocatal. Agric. Biotechnol. 13, 204–212. DOI:

He B., Hu Y., Wang W., Yan W., Ye Y., 2022. The progress towards novel herbicide modes of action and targeted herbicide development. Agronomy 12, 2792. agronomy12112792 DOI:

Hintz W., 2007. Development of Chondrostereum purpureum as a mycoherbicide for deciduous brush control. In: C. Vincent, M.S. Goettel, G. Lazarovits (eds.), Biological control: a global perspective. CAB International, Wallingford, 284–290. DOI:

Hitmi A., Coudret A., Barthomeuf C., 2000. The production of pyrethrins by plant cell and tissue cultures of Chrysanthemum cinerariaefolium and Tagetes species. Crit. Rev. Plant Sci. 19(1), 69–89. DOI:

Horodyska I.M., Ternovyi Y., Chub A., Lishchuk A., Draga M., 2021. Technologies of protection and nutrition in agrophytocenoses of legumes for organic seed production. Environ. Res. Eng. Manag. 77(1), 47–58. DOI:

Ibáñez M.D., Blázquez M.A., 2019. Phytotoxic effects of commercial Eucalyptus citriodora, La-vandula angustifolia, and Pinus sylvestris essential oils on weeds, crops, and invasive species. Molecules 24(15), 2847. DOI:

Imaizaumi S., Honda M., Fujimori T., 1999. Effect of temperature on the control of annual blue-grass (Poa annua L.) with Xanthomonas campestris cv. Poae (JT-P482). Biol Control. 16(1), 13–17. DOI:

Jemba B.J.M., Tersim N., Toudert K.T., Khouja M.L., 2012. Insecticidal activities of essential oils from leaves of Laurus nobilis L. from Tunisia, Algeria and Morocco, and comparative chemi-cal composition. J. Stored Prod. Res. 48, 97–104. DOI:

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Zidek A., Potapenko A., Bridgland A., Meyer C., Kohl S.A.A., Ballard A.J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A.W., Kavukcuoglu K., Kohli P., Hassabis D., 2021. Highly accurate protein struc-ture prediction with AlphaFold. Nature 596, 583–589. DOI:

Kachhawa D., 2017. Microorganisms as a biopesticides. J. Entomol. Zool. Stud. 5(3), 468–473.

Katagi T., 2010. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organ-isms. Rev. Environ. Contam. Toxicol. 204, 1–132. DOI:

Kaur S., Singh H., Mittal S., Batish D.R., Kohli R.K., 2010. Phytotoxic effects of volatile oil from Artemisia scoparia against weeds and its possible use as a bioherbicide. Ind. Crops Prod. 32, 54–61. DOI:

Kaur R., Kaur Mavi G., Raghav S., Khan I., 2019. Pesticides classification and its impact on envi-ronment. Int. J. Curr. Microbiol. App. Sci. 8(3), 1889–1897. /ijcmas. 2019.803.224 DOI:

Kennedy A.C., Johnson B.N., Stubbs T.L., 2001. Host range of a deleterious rhizobacterium for biological Control downy brome. Weed Sci. 49(6), 792–797.;2 DOI:[0792:HROADR]2.0.CO;2

Kezios K.L., Liu X., Cirillo P.M., Cohn B.A., Kalantzi O.I., Wang Y., Petreas M.X., Park J.S., Factor-Litvak P., 2013. Dichlorodiphenyltrichloroethane (DDT), DDT metabolites and preg-nancy outcomes. Reprod. Toxicol. 35, 156–164. DOI:

Knopp B.R., Hansen D.R., Thomsen S.V., 2002. Establishment and dispersal of Puccinia thlaspeos in field populations of Dyer’s woad. Plant Dis. 86(3), 241–246. DOI:

PDIS.2002.86.3.241 DOI:

Kordali S., Cakir A., Mavi A., Kilic H., Yildirim A., 2005. Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish Artemisia species z. J. Agric. Food Chem. 53, 1408–1416. DOI:

Kowalska G., Kowalski R.. 2019. Pestycydy – zakres i ryzyko stosowania, korzyści i zagrożenia. Praca przeglądowa. Ann. Hortic. 29(2), 5–25. DOI:

Książek-Trela P., Bielak E., Węzka D., Szpyrka E., 2022. Effect of three commercial formulations containing Effective Microorganisms (EM) on Diflufenican and Flurochloridone degradation in soil. Molecules 27(14), 4541. DOI:

Lim Y.P., Lin C.L., Hung D.Z., Ma W.C., Lin Y.N., Kao C.H., 2015. Increased risk of deep vein thrombosis and pulmonary thromboembolism in patients with organophosphate intoxication: a nationwide prospective cohort study. Medicine 94(1), e341. DOI:

Ma R., Kaundun S.S., Tranel P.J., Riggins C.W., McGinness D.L., Hager A.G., Hawkes T., McIn-doe E., Riechers D.E., 2013. Distinct detoxification mechanisms confer resistance to mesotri-one and atrazine in a population of waterhemp. Plant Physiol. 163(1), 363–377. DOI:

Martyniuk S., 2012. Factor affecting the use of microbial biopesticides in plant protection. Prog. Plant Prot. 52(4), 957–962.

Mehrpour O., Karrari P., Zamani N., Tsatsakis A.M., Abdollahi M., 2014. Occupational exposure to pesticides and consequences on male semen and fertility: a review. Toxicol. Lett. 230(2), 146–156. DOI:

Mfarrej M.F., Rara F.M., 2019. Competitive, sustainable natural pesticides. Acta Ecol. Sin. 39, 145–151. DOI:

Mnif W., Hassine A.I.H., Bouaziz A., Bartegi A., Thomas O., Roig B., 2011. Effect of endocrine disruptor pesticides: a review. Int. J. Environ. Res. Public Health 8(6), 2265–2303. DOI:

Mołoń A., Durak R., 2018. Biopestycydy jako stymulatory odporności roślin [Biopesticides as plant resistant stimulators]. Pol. J. Sustain. Dev. 22(10), 69–74. [in Polish]. DOI:

Morris M.J. 1989. A method for controlling Hakea sericea Schrad. seedlings using the fungus Colletotrichum gloeosporioides (Penz.) Sacc. Weed Res. 29(6), 449–454. DOI:

Morris M.J., Wood A.R., den Breeÿen A., 1999. Plant pathogens and biological control of weeds in South Africa: a review of projects and progress during the last decade. Afr. Entomol. Memoir 1, 125–128.

Motharasan M., Shukor M.Y., Yasid N.A., Wan Johari W.L., Ahmad S.A., 2018. Environmental fate and degradation of glyphosate in soil. Pertanika J. Sch. Res. Rev. 4, 102–116.

Mrówczyński M., Roth M., 2009. Zrównoważone stosowanie środków ochrony roślin [Sustainable use plant protection products]. Probl. Inż. Rol. 17(2), 93–98 [in Polish].

Mugisha-Kamatenesi M., Deng A.L., Ogendo J.O., Omolo E.O., Mihale M.J., Otim M., Buyungo J.P., Bett P.K., 2008. Indigenous knowledge of field insect pests and their management around lake Victoria basin in Uganda. Afr. J. Environ. Sci. Technol. 2, 342–348.

Nayak P., Dibyarani., 2020. Botanical pesticides: An insecticide from plant derivatives. Biot. Res. Today 2(8), 727–730.

Nicolopoulou-Stamati P., Maipas S., Kotampasi C., Stamatis P., Hens L., 2016. Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front. Public Health 4, 148. DOI:

Nisbet A.J., 2000. Azadirachtin from the neem tree Azadirachta indica: its action against insects. An. Soc. Entomol. Bras. 29(4), 615–632. DOI:

Nowak J., Górna B., Nowak W., 2013. Wykorzystanie grzybów strzępkowych do biodegradacji ścieków przemysłu ziemniaczanego z jednoczesną produkcją biomasy pleśniowej na cele pa-szowe [Applying filamentous fungi to biodegradation of wastewater from potato industry with simultaneous production of mould biomass for forage]. Żywn. Nauka Technol. Jakość 20(6), 191–203 [in Polish].

Orlikowski L.B., Skrzypczak Cz., 2003. Biocides in the control of soil-borne and leaf pathogens. Hortic. Veget. Grow. 22, 426–433.

O’Sullivan J., van Acker R., Grohs R., Riddle R., 2015. Improved herbicidal efficacy for organical-ly grown vegetables. Org Agric. 5(4), 315–322. DOI:

Owen M.D., Zelaya I.A., 2005. Herbicide-resistant crops and weed resistance to herbicides. Pest Manag. Sci. 61, 301–311. DOI:

Petit S., Munier-Jolain N., Bretagnolle V., Bockstaller C., Gaba S., Cordeau S., Lechenet M., Mé-ziére D., Colbach N., 2015. Ecological intensification through pesticide reduction: weed con-trol, weed biodiversity and sustainability in arable farming. Environ. Manage. 56(5), 1078–1090. DOI:

Phatak S.C., Sumner D.R., Wells H.D., Bell D.K., Glaze N.C., 1983. Biological control of yellow nutsedge with the indigenous rust fungus Puccinia canaliculata. Science 219(4591), 1446–1447. DOI:

Regulation (EC) No 1907/2006 – Registration, Evaluation, Authorisation and Restriction of Chemi-cals (REACH). OJ L 396, 30.12.2006.

Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and re-pealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006 (Text with EEA relevance). Dz.U. UE L 353 z 31.12.2008, s. 1, http://data. eli/reg/2008/1272/oj/pol [in Polish].

Ridings W.H., 1986. Biological control of stranglervine in citrus – a researcher’s view. Weed Sci. 34(S1), 31–32. DOI:

Said-Al Ahl H.A., Hikal W.M., Tkachenko K.G., 2017. Essential oils with potential as insecticidal agents: A review. Int. J. Environ. Plan. Manag. 3(4), 23–33.

Sammons R.D., Gaines T.A., 2014. Glyphosate resistance: state of knowledge. Pest Manag. Sci. 70, 1367–1377. DOI:

Schmutterer H., 1990. Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu. Rev. Entomol. 35(1), 271–297. DOI:

Sołtys D., Krasuska U., Bogatek R., Gniazdowska A., 2013. Allelochemicals as bioherbicides — present and perspectives. In: A.J. Price, J.A. Kelton (eds.), Herbicides – current research and case studies in use, 517–542. DOI:

Sparks T.C., Lorsbach B.A., 2017. Perspectives on the agrochemical industry and agrochemical discovery. Pest Manage. Sci. 73(4), 672–677. DOI:

Steenland K., Jenkins B., Ames R.G., O’Malley M., Chrislip D., Russo J., 1994. Chronic neurolog-ical sequelae to organophosphate pesticide poisoning. Am. J. Public Health 84(5), 731–736. DOI:

Sun W., Shahrajabian M.H., Cheng Q., 2020. Pyrethrum an organic and natural pesticide. J. Biol. Environ. Sci. 14(40), 41–44.

Tudi M., Ruan H., Wang L., Lyu J., Sadlera R., 2021. Agriculture development, pesticide applica-tion and its impact on the environment. Int. J. Environ. Res. Public Health 18(3), 1112. DOI:

Upadhayay V.K., Singh A.V., Pareek N., 2018. An insight in decoding the multifarious and splen-did role of microorganisms in crop biofortification. Int. J. Curr. Microbiol. Appl. Sci. 7(6), 2407–2418. DOI:

Watson A.K., 2018. Microbial herbicides. In: N.E. Korres, N.R. Burgos, S.O. Duke (eds.). Weed control: sustainability, hazards and risks in cropping systems worldwide. Boca Raton: CRC, 133–152. DOI:

Wójtowicz A.K., Szychowski K.A., 2014. DDT – przekleństwo czy błogosławieństwo XX wieku? [DDT – curse or blessing of the 20th century?]. Wszechświat 115(10–12), 284–287 [in Polish].

WRP 2020/163. Resistance of weeds to herbicides. Agricultural News Poland. [access: 23.02.2023].

Wrzosek J., Gworek B., Maciaszek D., 2009. Środki ochrony roślin w aspekcie ochrony środowi-ska [Plant protection products and environmental protection]. Ochr. Śr. Zasobów Nat. (39), 75–88 [in Polish].

Yan Y., Liu Q., Zang X., Yuan S., Bat-Erdene U., Nguyen C., Gan J., Zhou J., Jacobsen S.E., Tang Y., 2018. Resistance-gene-directed discovery of a natural-product herbicide with a new mode of action. Nature 559, 415–418. DOI:

Żelechowska A., Biziuk M., Wiergowski M., 2001. Charakterystyka pestycydów [Characteristics of pesticides]. In: M. Biziuk (ed.), Pestycydy – występowanie, oznaczanie i unieszkodliwianie [Pesticides – occurrence, determination and disposal]. WNT, Warszawa, 15–43 [in Polish].

Zheljazkov V.D., Micalizzi G., Yilma S., Cantrell C.L., Reichley A., Mondello L., Semerdjieva I., Radoukova T., 2022. Melissa officinalis L. as a sprout suppressor in Solanum tuberosum L. and an alternative to synthetic pesticides. J. Agric. Food Chem. 70(44), 14205–14219. DOI:


Piotr Barbaś 
Department of Potato Agronomy, Institute of Plant Breeding and Acclimatization – National Re-search Institute, Jadwisin Branch, Szaniawskiego 15, 05-140 Serock, Poland
Hakiye Aslan 
Vocational School of Food, Agriculture and Livestock, Bingöl University, 12000 Bingöl, Turkey
Imran Aslan 
Department of Occupational Health and Safety, Bingol University, Bingol, Turkey
Dominika Skiba 
Department of Plant Production Technology and Commodities Science, University of Life Science in Lublin, Akademicka 15, 20-950 Lublin, Poland
Olutosin Ademola Otekunrin 
Department of Agricultural Economics and Farm Management, Federal University of Agriculture, Abeokuta (FU NAAB) 110124
Barbara Helena Sawicka 
Department of Plant Production Technology and Commodities Science, University of Life Science in Lublin, Akademicka 15, 20-950 Lublin, Poland


Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.

Artykuły są udostępniane na zasadach CC BY 4.0 (do 2020 r. na zasadach CC BY-NC-ND 4.0)..
Przysłanie artykułu do redakcji oznacza, że nie był on opublikowany wcześniej i nie jest rozpatrywany do publikacji gdzie indziej.

Autor podpisuje oświadczenie o oryginalności dzieła, wkładzie poszczególnych osób i źródle finansowania.


Czasopismo Agronomy Science przyjęło politykę samoarchiwizacji nazwaną przez bazę Sherpa Romeo drogą niebieską. Od 2021 r. autorzy mogą samoarchiwizować postprinty artykułów oraz wersje wydawnicze (zgodnie z licencją CC BY). Artykuły z lat wcześniejszych (udostępniane na licencji CC BY-NC-ND 4.0) mogą być samoarchiwizowane tylko w wersji wydawniczej.


Inne teksty tego samego autora

1 2 > >>