Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin

Biosensors and nanobiosensors – a modern tools in phytopathogen detection

Agata Święciło

Katedra Mikrobiologii Środowiskowej, Wydział Agrobioinżynierii, Uniwersytet Przyrodniczy w Lublinie, ul. Leszczyńskiego 7, 20-069 Lublin, Polska

Anna Krzepiłko

Katedra Biotechnologii, Mikrobiologii i Żywienia Człowieka, Wydział Nauk o Żywności i Biotechnologii, Uniwersytet Przyrodniczy w Lublinie, ul. Skromna 8, 20-704 Lublin, Polska

Katarzyna Matyszczuk

Szkoła Doktorska UP Lublin, Katedra Biotechnologii, Mikrobiologii i Żywienia Człowieka, Wydział Nauk o Żywności i Biotechnologii, Uniwersytet Przyrodniczy w Lublinie, ul. Skromna 8, 20-704 Lublin, Polska

Marta Sowińska

Kolegium Nauk Medycznych, Uniwersytet Rzeszowski, al. Kopisto 2a, 35-959 Rzeszów, Polska


Abstract

The aim of the study was to analyse literature data on design solutions for biosensors used to detect phytopathogens. The general principles of the operation of biosensors and the mechanisms of the generation of an analytical signal are discussed. Particular focus was placed on biosensors containing nanomaterials, known as nanobiosensors. Nanomaterials can enhance the receptor layer of the biosensor, the transducer surface, or both of these elements. They immobilize to the transducer surface and stabilize receptor layer molecules or act as labels enhancing the analytical signal. As a result, compared to biosensors based on standard solutions, they have better operating parameters. Nanobiosensors used in phytopathology are primarily genosensors (containing mainly single-stranded DNA oligonucleotides, ssDNA in the receptor layer) or immunosensors (containing antibodies capable of recognizing specific structures of phytopathogenic bacteria or the coat proteins of plant viruses). Electrochemical or optical transduction of the biological signal is usually used in both types of device. Genosensors with microgravimetric signal transduction, based on the quartz microbalance technique, are much less common. Good analytical parameters were obtained for the biosensors and nanobiosensors in laboratory conditions, which is indicative of their great practical potential.

Keywords:

biosensors, nanobiosensors, detection, phytopathogens

Bhattacharjee A., Roy T.S., Haque Md.N., Pulok Md.A.I., Rahman Md.M., 2014. Changes of sugar and starch levels in ambient stored potato derived from TPS. Int. J. Sci. Res. Public. 4(11), 1–5.

Cai H., Xu Y., Zhu N., He P., Fang Y., 2002. An electrochemical DNA hybridization detection assay based on a silver nanoparticle label. Analyst. 127(6), 803–808. https://doi.org/10.1039/b200555g DOI: https://doi.org/10.1039/b200555g

Cassedy A., Mullins E., O’Kennedy R., 2020. Sowing seeds for the future: the need for on-site plant diagnostics. Biotechnol. Adv. 39. https://doi.org/107358. doi:10.1016/j DOI: https://doi.org/10.1016/j.biotechadv.2019.02.014

Cebula Z., Zoledowska S., Dziąbowska K., Skwarecka M., Malinowska N., Białobrzeska W., Czaczyk E., Siuzdak K., Sawczak M., Bogdanowicz R., Nidzworski D., 2019. Detection of the plant pathogen Pseudomonas syringae pv. lachrymans on antibody-modified gold elec-trodes by electrochemical impedance spectroscopy. Sensors 19. https://doi.org/10.3390/s19245411 DOI: https://doi.org/10.3390/s19245411

Chaudhary M., Verma S., Kumar A., Basavaraj Y.B., Tiwari P., Singh S., Chauhan S.K., Ku-mar P., Singh S.P., 2021. Graphene oxide based electrochemical immunosensor for rapid detection of groundnut bud necrosis orthotospovirus in agricultural crops. Talanta 235, 122717. https://doi.org/10.1016/j.talanta.2021.122717 DOI: https://doi.org/10.1016/j.talanta.2021.122717

Dickert F.L., Hayden O., Bindeus R., Mann K.J., Blaas D., Waigmann E., 2004. Bioimprinted QCM sensors for virus detection-screening of plant sap. Anal. Bioanal. Chem. 378, 1929–1934. https://doi.org/10.1007/s00216-004-2521-5 DOI: https://doi.org/10.1007/s00216-004-2521-5

Dubs M.C., Altschuh D., Van Regenmortel M.H.V., 1992. Mapping of viral epitopes with conformationally specific monoclonal antibodies using biosensor technology. J. Chroma-togr. A. 597 (1–2), 391–396. https://doi.org/10.1016/0021-9673(92)80136-i DOI: https://doi.org/10.1016/0021-9673(92)80136-I

Dyussembayev K., Sambasivam P., Bar I., Brownlie J., Shiddiky M., Ford R., 2021. Biosensor technologies for early detection and quantification of plant pathogens. Front. Chem. 9, https://doi.org/articles/10.3389/fchem.2021.63624

Dyussembayev K., Sambasivam P., Bar I., Brownlie J.C., Shiddiky M.J.A., Ford R., 2021. Biosensor technologies for early detection and quantification of plant pathogens. Front. Chem. 9. https://doi.org/10.3389/fchem.2021.636245 DOI: https://doi.org/10.3389/fchem.2021.636245

Eun A.J.C., Huang L., Chew F.T., Li S.F.Y., Wong S.M., 2002. Detection of two orchid virus-es using quartz crystal microbalance-based DNA biosensors. Phytopathology 92, 654–658. DOI: https://doi.org/10.1094/PHYTO.2002.92.6.654

Eun A.J.C., Wong S.M., 2000. Molecular beacons. A new approach to plant virus detection. Phytopathology 90, 269–275. DOI: https://doi.org/10.1094/PHYTO.2000.90.3.269

Fang Y., Ramasamy R.P., 2015. Current and prospective methods for plant disease detection. Biosensors 4, 537‒561. https://doi.org/10.3390/bios5030537 DOI: https://doi.org/10.3390/bios5030537

Freitas T.A., Proença C.A., Baldo T.A., Materón E.M., Wong A., Magnani R.F., Faria R.C., 2019. Ultrasensitive immunoassay for detection of Citrus tristeza virus in citrus sample using disposable microfluidic electrochemical device. Talanta 205. https://doi.org/10.1016/j.talanta.2019.07.005Gutiérrez-Aguirre I., Hodnik V., Glais L., Ru-par M., Jacquot E., Anderluh G., Ravnikar M., 2014. Surface plasmon resonance for moni-toring the interaction of Potato virus Y with monoclonal antibodies. Anal Biochem. 447, 74–81. https://doi.org/10.1016/j.ab.2013.10.032 DOI: https://doi.org/10.1016/j.ab.2013.10.032

Haji-Hashemi H., Habibi M.M., Safarnejad M.R., Norouzi P., Ganjali M.R., 2018. Label-free electrochemical immunosensor based on electrodeposited prussian blue and gold nanopar-ticles for sensitive detection of citrus bacterial canker disease. Sens. Actuators B Chem. 275, 61–68. https://doi.org/10.1016/j.snb.2018.07.148 DOI: https://doi.org/10.1016/j.snb.2018.07.148

Haji-Hashemi H., Safarnejad M.R., Norouzi P., Ebrahimi M., Shahmirzaie M., Ganjal, M.R., 2019. Simple and effective label free electrochemical immunosensor for Fig mosaic virus detection. Anal. Biochem. 566, 102–106. https://doi.org/10.1016/j.ab.2018.11.017 DOI: https://doi.org/10.1016/j.ab.2018.11.017

Jarocka U., Wasowicz M., Radecka H., Malinowski T., Michalczuk L., Radecki J., 2011. Imped-imetric immunosensor for detection of plum pox virus in plant extracts. Electroanalysis 23, 2197–2204. https://doi.org/10.1002/elan.201100152 DOI: https://doi.org/10.1002/elan.201100152

Jian Y.S., Lee C.H., Jan F.J., Wang G.J., 2018. Detection of Odontoglossum Ringspot Virus infected Phalaenopsis using a nano-structured biosensor. J. Electrochem. Soc. 165. https://doi.org/10.1149/2.0351809jes] DOI: https://doi.org/10.1149/2.0351809jes

Jin L., Yang K., Yao K., Zhang S., Tao H., Lee ST., Liu Z., Peng R., 2012. Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability. ACS Nano. 6( 6), 4864–4875. DOI: https://doi.org/10.1021/nn300217z

Kaur R., Sharma S.K., Tripathy S.K., 2019. Advantages and limitations of environmental nanosensors. W: Deep A., Kumar S. (red.), Advances in nanosensors for biological and environmental analysis. Elsevier. DOI: https://doi.org/10.1016/B978-0-12-817456-2.00007-3

Khaledian S., Nikkhah M., Shams-bakhsh M., Hoseinzadeh S., 2017. A sensitive biosensor based on gold nanoparticles to detect Ralstonia solanacearum in soil. J. Gen. Plant Pathol. 83, –-9. https://doi.org/10.1007/s10327-017-0721-z DOI: https://doi.org/10.1007/s10327-017-0721-z

Khater M., Alfredo de la E.M., Daniel Q.G., Merkoçi A., 2019. Electrochemical detection of plant virus using gold nanoparticle-modified electrodes. Anal. Chim. Acta. 1046, 123–131. https://doi.org/10.1016/j.aca.2018.09.031 DOI: https://doi.org/10.1016/j.aca.2018.09.031

Korotkaya E.V., 2014. Biosensors: design, classification, and applications in the food industry. Foods Raw Mater. 2, 161–171. https://doi.org/10.12737/5476 DOI: https://doi.org/10.12737/5476

Lau H., Wu H., Wee E., Trau M., Wang Y., Botella J.R., 2017. Specific and sensitive isother-male electrochemical biosensor for plant pathogen DNA detection with colloidal gold na-noparticles as probes. Sci Rep. 7, 38896. https://doi.org/10.1038/srep38896 DOI: https://doi.org/10.1038/srep38896

Lautner G., Balogh Z., Bardoczy V., Meszaros T., Gyurcsanyi R.E., 2010. Aptamer-based biochips for label-free detection of plant virus coat proteins by SPR imaging. Analyst. 135. 918–926. https://doi.org/10.1039/b922829b DOI: https://doi.org/10.1039/b922829b

Lee E., Yoon Y.S., Kim D.J., 2018. Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS Sens. 3, 2045–2060, https://doi.org/10.1021/acssensors.8b01077 DOI: https://doi.org/10.1021/acssensors.8b01077

Leonard P., Hearty S., Brennan J., Dunne L., Quinn J., Chakraborty T., O'Kennedy R., 2003. Advances in biosensors for detection of pathogens in food and water. Enzyme Microb. Technol. 32, 3–13. https://doi.org/10.1016/S0141-0229(02)00232-6 DOI: https://doi.org/10.1016/S0141-0229(02)00232-6

Lin H.Y., Huang C.H., Lu S.H., Kuo I.T., Chau, L.K., 2014. Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosens. Bioe-lectron. 51, 371–378. https://doi.org/10.1016/j.bios.2013.08.009 DOI: https://doi.org/10.1016/j.bios.2013.08.009

Liu S., Yuan L., Yue X., Zheng Z., Tang Z., 2008. Recent advances in nanosensors for organ-ophosphate pesticide detection. Adv. Powder Technol. 19, 419–441. https://doi.org/10.1016/S0921-8831(08)60910-3 DOI: https://doi.org/10.1163/156855208X336684

Luo X.L., Xu J.J., Zhao W., Chen H.Y., 2004. A novel glucose ENFET based on the special reactivity of MnO2 nanoparticles. Biosens. Bioelectron. 19(10), 1295–1300. https://doi.org:10.1016/j.bios.2003.11.019 DOI: https://doi.org/10.1016/j.bios.2003.11.019

Malecka K., Michalczuk L., Radecka H., Radecki J., 2014. Ion-channel genosensor for the detection of specific DNA sequences derived from plum pox virus in plant extracts. Sen-sors 14, 18611–18624. https://doi.org/10.3390/s141018611 DOI: https://doi.org/10.3390/s141018611

Martinelli F., Scalenghe R., Davino S., Panno S., Scuderi G., Ruisi P., Villa P., Stroppiana D., Boschetti M., Goulart L.R., Davis C.E., Dandekar A.M., 2015. Advanced methods of plant disease detection. A review. Agron. Sustain. Dev. 35, 1–25. https://doi.org:10.1007/s13593-014-0246-1 DOI: https://doi.org/10.1007/s13593-014-0246-1

Papadakis G., Skandalis N., Dimopoulou A., Glynos P., Gizeli E., 2015. Bacteria Murmur: Application of an acoustic biosensor for plant pathogen detection. PLoS ONE 10(7), e0132773. https://doi.org/10.1371/journal.pone.0132773 DOI: https://doi.org/10.1371/journal.pone.0132773

Puttharugsa C., Wangkam T., Huangkamhang N., Gajanandana O., Himananto O., Sutapun B., Amarit R., Somboonkaew A., Srikhirin T., 2011. Development of surface plasmon res-onance imaging for detection of Acidovorax avenae subsp. citrulli (Aac) using specific monoclonal antibody. Biosens. Bioelectron., 26(5), 2341–2346. https://doi.org/10.1016/j.bios.2010.10.007 DOI: https://doi.org/10.1016/j.bios.2010.10.007

Rad F., Mohsenifar A., Tabatabaei M., Safarnejad M.R., Shahryari F., Safarpour, H., Foroutan A., Mardi M., Davoudi D., Fotokian M., 2012. Detection of Candidatus Phytoplasma au-rantifolia with a quantum dots fret-based biosensor. J. Plant Pathol. 94, 525–534. https://doi.org/10.4454/JPP.FA.2012.054

Razmi A., Golestanipour A., Nikkhah M., Bagheri A., Shamsbakhsh M., Malekzadeh-Shafaroudi S., 2019. Localized surface plasmon resonance biosensing of Tomato Yellow Leaf Curl Virus. J. Virol. Methods 267, 107. https://doi.org/10.1016/j.jviromet.2019.02.004 DOI: https://doi.org/10.1016/j.jviromet.2019.02.004

Regiart M., Fernández-Baldo M.A., Villarroel-Rocha J., Messina G.A., Bertolino F.A., Sapag K., 2017. Microfluidic immunosensor based on mesoporous silica platform and CMK-3/poly-acrylamide-co-methacrylate of dihydrolipoic acid modified gold electrode for cancer biomarker detection. Anal. Chim Acta 963, 83–92. https://doi.org/10.1016/j.aca.2017.01.029 DOI: https://doi.org/10.1016/j.aca.2017.01.029

Renneberg R., Pfeiffer D., Lisdat F., 2008. Biosensing for the 21st Century. Series: Advances in Biochemical Engineering/Biotechnology 109, 1–18. DOI: https://doi.org/10.1007/978-3-540-75201-1

Rodriguez-Mozaz S., Marco M.P., Alda M.J.L., Barceló D., 2004. Biosensors for environmental applications: future development trends. Pure Appl. Chem. 76, 723–752. https://doi.org/10.1351/pac200476040723 DOI: https://doi.org/10.1351/pac200476040723

Rogers K.R., 2006. Recent advances in biosensor techniques for environmental monitoring. Anal. Chim. Acta 568, 222–231. https://doi.org/10.1016/j.aca.2005.12.067 DOI: https://doi.org/10.1016/j.aca.2005.12.067

Sarcina L., Macchia E., Loconsole G., D’Attoma G., Saldarelli P., Elicio V., Palazzo G., Torsi L., 2021. Surface plasmon resonance assay for label-free and selective detection of Xylella fastidiosa. Adv. NanoBiomed Res. 1, 2100043. https://doi.org/10.1002/anbr.202100043 DOI: https://doi.org/10.1002/anbr.202100043

Schofield D.A., Bull C.T., Rubio I., Wechter W.P., Westwater C. Molineux I.J., 2013. Light-tagged” bacteriophage as a diagnostic tool for the detection of phytopathogens. Bioengi-neered 4(1), 50–54. https://doi.org/10.4161/bioe.22159 DOI: https://doi.org/10.4161/bioe.22159

Sharma P., Pandey V., Sharma M.M.M., Patra A., Singh B., Mehta S., Husen A., 2021. A review on biosensors and nanosensors application in agroecosystems. Nanoscale Res Lett. 16, 136. https://doi.org/10.1186/s11671-021-03593-0 DOI: https://doi.org/10.1186/s11671-021-03593-0

Subrahmanyam S., Piletsky S.A., Turner, A.P.F., 2002. Application of natural receptors in sensors and assays. Anal. Chem. 74, 942–952. https://doi.org/.1021/AC025673+ DOI: https://doi.org/10.1021/ac025673+

Tichoniuk M. 2010. Elektrochemiczny biosensor DNA do wykrywania bakterii chorobotwór-czych w żywności. Zeszyty Naukowe. Uniwersytet Ekonomiczny. Poznań, 183, 27–41.

Tolba M., Ahmed M.U., Tlili C., Eichenseher F., Loessner M.J., Zourob M., 2012. A bacterio-phage endolysin-based electrochemical impedance biosensor for the rapid detection of Lis-teria cells. Analyst 137, 5749–5756. https://doi.org/10.1039/c2an35988j DOI: https://doi.org/10.1039/c2an35988j

Vaseghi A., Safaie N., Bakhshinejad B., Mohsenifar A., Sadeghizadeh M., 2013. Detection of Pseudomonas syringae pathovars by thiol-linked DNA–Gold nanoparticle probes. Sens. Actuators B Chem. 181, 644–651. https://doi.org/10.1016/J.SNB.2013.02.018 DOI: https://doi.org/10.1016/j.snb.2013.02.018

Wang Y.X., Ye Z.Z., Ying Y.B., 2012. New trends in impedimetric biosensors for the detec-tion of foodborne pathogenic bacteria. Sensors 12, 3449–3471. https://doi.org/10.3390/s120303449 DOI: https://doi.org/10.3390/s120303449

Xu K., Huang J., Ye Z., Ying Y., Li Y., 2009. Recent development of nanomaterials used in DNA biosensors. Sensors 9, 5534–5557. https://doi.org/10.3390/s90705534 DOI: https://doi.org/10.3390/s90705534

Yao K.S,. Li S.J., Tzeng K.C., Cheng T.C., Chang C.Y., Chiu C.Y., Liao C.Y., Hsu J.J., Lin Z.P., 2009. Fluorescence silica nanoprobe as a biomarker for rapid detection of plant path-ogens. Adv. Mater. Res. 79, 513–551. DOI: https://doi.org/10.4028/www.scientific.net/AMR.79-82.513

Zeng C., Huang X., Xu J., Li G., Ma J., Ji H.-F., Zhu S., Chen H., 2013. Rapid and sensitive detection of maize chlorotic mottle virus using surface plasmon resonance-based biosen-sor. Anal. Biochem. 440(1), 18–22. https://doi.org/10.1016/j.ab.2013.04.026 DOI: https://doi.org/10.1016/j.ab.2013.04.026

Zhang M., Chen W., Chen X., Zhang Y., Lin X., Wu Z., Li M., 2013. Multiplex immunoas-says of plant viruses based on functionalized upconversion nanoparticles coupled with immunomagnetic separation. J. Nanomater. 1–8. https://doi.org/10.1155/2013/317437 DOI: https://doi.org/10.1155/2013/317437

Zhao W., Lu J., Ma W., Xu C., Kuang H., Zhu S., 2011. Rapid on-site detection of Acidovorax avenae subsp. citrulli by gold-labeled DNA strip sensor. Biosens. Bioelectron. 15, 26(10), 4241–4244. https://doi.org/10.1016/j.bios.2011.04.004 DOI: https://doi.org/10.1016/j.bios.2011.04.004

Zhao Y., Liu L., Kong D., Kuang H., Wang L., Xu C., 2014. Dual amplified electrochemical immunosensor for highly sensitive detection of Pantoea stewartii sbusp. stewartii. ACS Appl. Mater. Interfaces. 6, 23, 21178–21183. https://doi.org/10.1021/am506104r DOI: https://doi.org/10.1021/am506104r


Published
2023-01-25



Agata Święciło 
Katedra Mikrobiologii Środowiskowej, Wydział Agrobioinżynierii, Uniwersytet Przyrodniczy w Lublinie, ul. Leszczyńskiego 7, 20-069 Lublin, Polska
Anna Krzepiłko 
Katedra Biotechnologii, Mikrobiologii i Żywienia Człowieka, Wydział Nauk o Żywności i Biotechnologii, Uniwersytet Przyrodniczy w Lublinie, ul. Skromna 8, 20-704 Lublin, Polska
Katarzyna Matyszczuk 
Szkoła Doktorska UP Lublin, Katedra Biotechnologii, Mikrobiologii i Żywienia Człowieka, Wydział Nauk o Żywności i Biotechnologii, Uniwersytet Przyrodniczy w Lublinie, ul. Skromna 8, 20-704 Lublin, Polska
Marta Sowińska 
Kolegium Nauk Medycznych, Uniwersytet Rzeszowski, al. Kopisto 2a, 35-959 Rzeszów, Polska



License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 

Agronomy Science has adopted a self-archiving policy called blue by the Sherpa Romeo database. From 2021 authors can self-archive article postprints and editorial versions (under the CC BY 4.0 licence). Articles from earlier years (available under the CC BY-NC-ND 4.0 licence) can only be self-archived as editorial versions.


Most read articles by the same author(s)