EFFECTS OF DROUGHT TREATMENT ON THREE MATRIX PLANTING PERENNIALS

Dagmar Hillová

Slovak University of Agriculture in Nitra, Slovakia

Helena Lichtnerová

Slovak University of Agriculture in Nitra, Slovakia

Veronika Mitošinková

Slovak University of Agriculture in Nitra, Slovakia

Monika Brtáňová

Slovak University of Agriculture in Nitra, Slovakia

Marcel Raček

Slovak University of Agriculture in Nitra, Slovakia

Marcin Kubus

Westpomeranian University of Technology, Szczecin, Poland



Abstract

The goal of research was to evaluate the above-ground physiological and overall plant responses of chosen herbaceous matrix plants to varying water soil content
in confined root zone. Stachys macrantha (C. Koch) Jalas, Brunnera macrophylla (Adams) IM Johnston. and Geranium macrorrhizum L. were subjected to drought.
We measured a) stomatal conductance, b) leaf area, c) dry matter content, d) leaf pigments content, e) visual quality rating. Drought stress led to considerable decline in stomatal conductance (75% Stachys, 60% Geranium, and 42% Brunnera) and in leaf area (Stachys 59%, Geranium 53%, Brunnera 45%). There were observed opposite trend: increased in leaf dry matter content (33% Stachys, 14% Brunnera), root dry matter content (22% Stachys, 14% Brunnera) and ratio carotenoid/total chlorophyll content (4% Brunnera). Two from investigated plants (Brunnera and Geranium) survived in drought condition at acceptable morphological damage, however, Stachys did not perform well in a confined root zone. These results lead to the conclusion that Brunnera and Geranium are well adapted to dry conditions and would be suitable for use in low water use landscape, however, Stachys is partially recommended.

Keywords:

stomatal conductance, SLA, chlorophyll, carotenoids, visual quality

Anjum, S.A., Xie, X.-Y., Wang, L.-C., Saleem, M.F., Man, C., Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agricult. Res., 6(9), 2026–2032.
Arjenaki, F.G., Jabbari, R., Morshedi, A. (2012). Evaluation of drought stress on relative water content, chlorophyll content and mineral elements of wheat (Triticum aestivum L.) varieties. J. Agricult. Crop Sci, 4, 726–729.
Chylinski, K.W., Łukaszewska, A.J. (2010). Response of three ornamental perennials to drought stress. Ann. Warsaw Univ. Life Sci. – SGGW, Horticult. Landsc. Architect., 31, 29–34
Dunnett, N., Hitchmough, J. (ed.) (2007). The dynamic landscape: design, ecology and management of naturalistic urban planting. Taylor & Francis.
Garland, K.F., Burnett, S.E., Day, M.E., Iersel, M.W. (2012). Influence of substrate water content and daily light integral on photosynthesis, water use efficiency, and morphology of Heuchera americana. J. Amer. Soc. Hort. Sci., 137, 57–67.
Grammatikopoulos, G., Manetas, Y. (1994). Direct absorption of water by hairy leaves of Phlomis fruticosa and its contribution to drought avoidance. Canad. J. Bot., 72(12), 1805–1811,
Hansen, R., Stahl, F. (1993). Perennials and their garden habitats. Cambridge: Cambridge University Press.
Karimi, S., Yadollahi, A., Arzani, K., Imani, A. (2013). Leaf pigments help almond explants tolerating osmotic stress. World Acad. Sci. Engin. Technol., Internat. J. Biol. Vet. Agricult. Food Engin., 7(5), 361–364
Kircher, W., Messer, U., Fenzl, J., Heins, M., Dunnett, N., (2011). Optimizing the Visual Quality and Cost Effectiveness of Perennial Plantings by Randomly Mixed Combinations-Application Approaches for Planting Design.: http://193.25.34.143/landschaftsinformatik/fileadmin/
/user_upload/_temp_/2011/Proceedings/603_KIRCHER_2011_E.pdf
Lambers, H., Chapin, F.S., Pons, T.L. (1998). Plant physiological ecology. Springer-Verlag New York, Inc., New York
Levitt, J. (1980). Responses of plants to environmental stresses. Vol. 2: Water, radiation, salt and other stresses, 2nd ed. Academic Press, New York.
Liu, Ch., Liu, Y., Guo, K., Fan, D., Li, G., Zheng, Y., Yu, L., Yang, R. (2011). Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environ. Exp. Bot., 71(2), 174–183
Machovec, J., Jakábová, A. (2006). Sadovnícke kvetinárstvo. 1. vyd. Nitra: Slovenská pol’nohospodárska univerzita, 209 s. ISBN 80-8069-740-x.
Marcelis, L.F.M., Heuvelink, E., Goudriaan, J. (1998). Modelling biomass production and yield of horticultural crops: a review. Sci. Horticult., 74(1), 83–111.
Maroco, J.P., Pereira, J.S., Chaves, M. (2000). Growth, photosynthesis and water-use efficiency of two Sahelian grasses subjected to water deficits. J. Arid Environ., 45(2), 119–137.
Mårtensson, L.-M., Wuolo, A., Fransson, A.-M., Emilsson, T. (2014). Plant performance in living wall systems in the Scandinavian climate. Ecol. Engin., 71, 610–614.
Nikolaeva, M.K., Maevskaya, S.N., Shugaev, A.G., Bukhov, N.G. (2010). Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity. Russ. J. Plant Physiol., 57(1), 87–95.
Oudolf, P., Kingsbury, N. (2013). Planting: A new perspective. Timber Press.
Painawadee, M., Jogloy, S., Kesmala, T., Akkasaeng, Ch., Patanothai, A. (2009). Identification of traits related to drought resistance in peanut (Arachis hypogaea L.). Asian J. Plant Sci., 8(2), 120–128.
Pessarakli, M. (ed.). (2002). Handbook of plant and crop stress. CRC Press.
Pilon-Smith, E.A.H, Ebskamp, M.J.M., Paul, M.J., Jeuken, M.J.W., Weisbeek, P.J., Smeekens, S.C.M. (1995). Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol., 107(1), 125–130.
Scheiber, S.M., Gilman, E.F., Sandrock, D.R., Paz, M., Wiese, C., Brennan, M. (2008). Postestablishment landscape performance of Florida native and exotic shrubs under irrigated and nonirrigated conditions. HortTechnol., 18(1), 59–67.
Scarfone, S.C. (2007). Professional planting design: An architectural and horticultural approach for creating mixed bed plantings. John Wiley & Sons.
Shao, H.B., Chu, L.Y., Jaleel, C.A., Zhao, C.X. (2008). Water-deficit stress-induced anatomical changes in higher plants. Compt. Rend. Biol., 331(3), 215–225.
Susiluoto, S., Berninger, F. (2007). Interactions between morphological and physiological drought responses in Eucalyptus microtheca. Silva Fenn., 41(2), 221–233.
Šesták, Z., Čadský, J. (1966). Základní metody studia a stanovení chlorofylu. Metody studia fotosyntetické produkce rostlin, metodické príručky experimentální botaniky. Sv. 2, Academie, Praha, 335–366.
Wolfe, J.I., Zajicek, J.M. (1998). Are ornamental grasses acceptable alternatives for low maintenance landscapes? J. Environ. Horticult., 16, 8–10.
Zollingera, N., Kjelgrena, R., Cerny-Koenigb, T., Koppa, K., Koenigc, R. (2006). Drought responses of six ornamental herbaceous perennials. Sci. Horticult., 109(3), 267–274.
Download

Published
2016-10-31



Dagmar Hillová 
Slovak University of Agriculture in Nitra, Slovakia
Helena Lichtnerová 
Slovak University of Agriculture in Nitra, Slovakia
Veronika Mitošinková 
Slovak University of Agriculture in Nitra, Slovakia
Monika Brtáňová 
Slovak University of Agriculture in Nitra, Slovakia
Marcel Raček 
Slovak University of Agriculture in Nitra, Slovakia
Marcin Kubus 
Westpomeranian University of Technology, Szczecin, Poland



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.