Effects of different farming systems and crop protection strategies on the health status and yield of carrots Daucus carota L. ssp. sativus

Bożena Cwalina-Ambroziak

Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Michała Oczapowskiego 2, 10-719 Olsztyn Poland
https://orcid.org/0000-0002-8841-5416


Abstract

The aim of this study was to evaluate the effects of farming systems on the health status of carrots cv. Koral and root yield components. The organic farming system promoted the spread of damping-off of seedlings in the first two wet growing seasons and Alternaria leaf blight in the last growing season with normal precipitation levels. At harvest, the severity of root diseases was low. During storage, carrot roots were susceptible to soft rot, Sclerotinia rot and dry rot. In the integrated farming system, the symptoms of mixed rot were more observed at harvest and after storage, and of dry rot after storage. In the organic farming system, the symptoms of dry rot were more noted at harvest, and the symptoms of crater rot were more observed after storage. During storage, the applied crop protection methods significantly suppressed mixed rot in the integrated farming system, and dry rot in the organic system. The isolation of potential pathogens from carrot petioles and roots confirmed their participation in the disease process. Negative correlations were found between the severity of Alternaria leaf blight vs. the marketable yield of carrots and single root weight in both production systems in selected years of the study.

Keywords:

Daucus carota L., integrated farming system, organic farming system, diseases, fungal pathogens, yield

Alrumaihi, F., Almatroudi, A., Allemailem, K.S., Rahmani, A.H., Khan, A., Khan, M.A. (2020). Therapeutic effect of Bilsaan, Sambucus nigra stem exudate, on the OVA-induced allergica asthma in mice. Oxid. Med. Cell. Long., 3620192. https://doi.org/10.1155/2020/3620192 DOI: https://doi.org/10.1155/2020/3620192

Bajer, T., Bajerová, P., Ventura, K. (2017). Effect of harvest and drying on composition of volatile profile of elderflowers (Sambucus nigra) from Wild. Nat. Prod. Comm., 12(12), 1937–1942. DOI: https://doi.org/10.1177/1934578X1701201231

Bartak, M., Lange, A., Słońska, A., Cymerys, J. (2020). Antiviral and healing potential of Sambucus nigra extracts. Rev. Bionatura, 5(3), 1264–1270. DOI: https://doi.org/10.21931/RB/2020.05.03.18

Bratu, M., Doroftei, E., Negreanu-Pirjol, T., Hostina, C., Porta, S. (2012). Determination of antioxidant activity and toxicity of Sambucus nigra fruit extract using alternative methods. Food Technol. Biotechnol., 50(2), 177–182.

Csorba, V., Toth, M., Laszlo, A.M., Kardos, L., Kovacs, S. (2020). Cultivar and year effects on the chemical composition of elderberry (Sambucus nigra L.) fruits. Not. Bot. Horti. Agrobo., 48(2), 770–782. https://doi.org/10.15835/nbha48211873 DOI: https://doi.org/10.15835/nbha48211873

Dawidowicz, A., Wianowska, D., Baraniak, B. (2006). The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts). LWT – Food Sci. Technol. 39, 308–315. https://doi.org/10.1016/j.lwt.2005.01.005 DOI: https://doi.org/10.1016/j.lwt.2005.01.005

Diviš, P., Pořízka, J., Vespalcová, M., Matějíček, A., Kaplan, J. (2015). Elemental composition of fruits from different black elder (Sambucus nigra L.) cultivars grown in the Czech Republic. J. Elem., 20 (3), 549–557. https://doi.org/10.5601/jelem.2015.20.1.758 DOI: https://doi.org/10.5601/jelem.2015.20.1.758

Duymuş, H., Göger, F., Başer, C. (2014). In vitro antioxidant properties and anthocyanin compositions of elderberry extracts. Food Chem., 155, 112–119. https://doi.org/10.1016/j.foodchem.2014.01.028 DOI: https://doi.org/10.1016/j.foodchem.2014.01.028

Dżugan, M., Pizoń, A., Tomczyk, M., Kapusta, I. (2019). A new black elderberry dye enriched in antioxidants designed for healthy sweets production. Antioxidants, 8(8), 257. https://doi.org/10.3390/antiox8080257 DOI: https://doi.org/10.3390/antiox8080257

El-Hawary, S.S., Fathy, F.I., EL Tantawy, M.E., El Kerdawy, A.M., Mansour, M.K., Meselhy, K.M. (2020). Phytochemical profile and cytotoxic activity of selected organs of Sambucus nigra L. via enzyme assay and molecular docking study. Egypt. J. Chem., 63(12), 4941–4949. https://doi.org/10.21608/EJCHEM.2020.31739.2674 DOI: https://doi.org/10.21608/ejchem.2020.31739.2674

Elvira-Torales, L.I., García-Alonso, J., Periago-Castón, M.J. (2019). Nutritional importance of carotenoids and their effect on liver health: a review. Antioxidants, 8, 229. https://doi.org/10.3390/antiox8070229 DOI: https://doi.org/10.3390/antiox8070229

Farmakopea Polska V. (1999). PTF, Warszawa.

Farmakopea Polska IX. (2011). PTF, Warszawa.

Farmakopea Polska XI. (2017). PZWL, Warszawa.

Ferreira, S., Silva, P., Silva, A., Nunes, F. (2020). Effect of harvesting year and elderberry cultivar on the chemical composition and potential bioactivity: a three-year study. Food Chem., 302, 1253–1266. https://doi.org/10.1016/j.foodchem.2019.125366 DOI: https://doi.org/10.1016/j.foodchem.2019.125366

Garcìa, L.M., Ceccanti, C., Negro, C., De Bellis, L., Incrocci, L., Pardossi, A., Guidi, L. (2021). Effect of drying methods on phenolic compounds and antioxidant activity of Urtica dioica L. leaves. Horticulturae, 7(1), 10. https://doi.org/10.3390/horticulturae7010010 DOI: https://doi.org/10.3390/horticulturae7010010

Güzelmeriç, E., Çelik, C., Şen, N.B., Oçkun, M.A., Yeşilada, E. (2021). Quali/quantitative research on herbal supplements containing black elder (Sambucus nigra L.) fruits. J. Res. Pharm., 25(3), 238–248. https://doi.org/10.29228/jrp.14 DOI: https://doi.org/10.29228/jrp.14

Ho, G.T.T., Wangensteen, H., Barsett, H. (2017). Elderberry and elderflower extracts, phenolic compounds, and metabolites and their effect on complement, RAW264.7 macrophages and dendritic cells. Int. J. Mol. Sci., 18, 584. https://doi.org/10.3390/ijms18030584 DOI: https://doi.org/10.3390/ijms18030584

Holm, G. (1954). Chlorophyll mutations in barley. Acta Agric. Scand., 4, 457–471. https://doi.org/10.1080/00015125409439955 DOI: https://doi.org/10.1080/00015125409439955

Imenšek, N., Ivančič, A., Kraner Šumenjak, T., Islamčević Rasboršek, M., Kristl, J. (2021). The effect of maturation on chemical composition and harvest of fruits of diverse elderberry interspecific hybrids. Eur. J. Hortic. Sci. 86(3), 223–231. https://doi.org/10.17660/eJHS.2021/86.3.1 DOI: https://doi.org/10.17660/eJHS.2021/86.3.1

Jabłońska-Ryś, E., Zalewska-Korona, M., Kalbarczyk, J. (2009). Antioxidant capacity, ascorbic acid and phenolics content in wild edible fruits. J. Fruit Ornam. Plant Res., 17 (2), 115–120.

Kołodziej, B., Drożdżal, K. (2011). Właściwości przeciwutleniające kwiatów i owoców bzu czarnego pozyskiwanego ze stanu naturalnego. Żywn. Nauka Technol. Jakość, 4(77), 36–44.

Mahboubi, M. (2021). Sambucus nigra (black elder) as alternative treatment for cold and flu. Adv. Tradit. Med., 10, 1–10. https://doi.org/10.1007/s13596-020-00469-z DOI: https://doi.org/10.1007/s13596-020-00469-z

Marțiș (Petruț), G., Mureșan, V., Marc, R., Mureșan, C., Pop, C., Buzgău, G., Mureșan, A., Ungur, R., Muste, S. (2021). The physicochemical and antioxidant properties of Sambucus nigra L. and Sambucus nigra Haschberg during growth phases: from buds to ripening. Antioxidants, 10, 1093. https://doi.org/10.3390/antiox10071093 DOI: https://doi.org/10.3390/antiox10071093

Miraj, S. (2016). Chemical composition and pharmacological effects of Sambucus nigra. Pharma Chem., 8(13), 231–234.

Młynarczyk, K., Walkowiak-Tomczak, D., Łysiak, G. (2018). Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. J. Funct. Foods, 40, 377–390. https://doi.org/10.1016/j.jff.2017.11.025 DOI: https://doi.org/10.1016/j.jff.2017.11.025

Mota, A.H., Duarte, N., Serra, A.T., Ferreira, A., Bronze, M.R., Custódio, L., Gaspar, M.M., Simões, S., Rijo, P., Ascensão, L., Faísca, P., Viana, A.S., Pinto, R., Kumar, P., Almeida, A.J., Reis, C.P. (2020). Further evidence of possible therapeutic uses of Sambucus nigra L. extracts by the assessment of the in vitro and in vivo anti-inflammatory properties of its PLGA and PCL-based nanoformulations. Pharmaceutics, 12, 1181. https://doi.org/10.3390/pharmaceutics12121181 DOI: https://doi.org/10.3390/pharmaceutics12121181

Neekhra, S., Awasthi, H., Singh, D.C.P. (2021). Beneficial effects of Sambucus nigra in chronic stress-induced neurobehavioral and biochemical perturbation in rodents. Pharmacogn. J., 13(1). 155–161. DOI: https://doi.org/10.5530/pj.2021.13.22

Palomino, O., García-Aguilar, A., González, A., Guillén, C., Benito, M., Goya, L. (2021). Biological actions and molecular mechanisms of Sambucus nigra L. in neurodegeneration: a cell culture approach. Molecules, 26, 4829. https://doi.org/10.3390/molecules26164829 DOI: https://doi.org/10.3390/molecules26164829

Pareek, S., Sagar, N.A., Sharma, S., Kumar, V., Agarwal, T., González-Aguilar, G.A., Yahia, E.M. (2018). Chlorophylls: chemistry and biological functions. In: Fruit and vegetable phytochemicals: chemistry and human health, Yahia, E.M. (ed.). Vol. 1. 2nd ed. Wiley Blackwell, Chichester–Hobocken. DOI: https://doi.org/10.1002/9781119158042.ch14

Pereira, D.I., Amparo, T.R., Almeida, T.C., Costa, F.S.F., Brandao, D.C., David, O., dos Santos, S., da Silva, G.N., de Souza, G.H.B. (2020). Cytotoxic activity of butanolic extract from Sambucus nigra L. flowers in natura and vehiculated in micelles in bladder cancer cells and fibroblasts. Nat. Prod. Res. https://doi.org/10.1080/14786419.2020.1851220 DOI: https://doi.org/10.1080/14786419.2020.1851220

Petruț, G., Muste, S., Muresan, C., Paucean, A., Muresan, A., Nagy, M. (2017). Chemical profiles and antioxidant activity of black elder (Sambucus nigra L.) – a review. ‎J. Food Sci. Technol., 74 (1), 9–16. DOI: https://doi.org/10.15835/buasvmcn-fst:11591

Pliszka, B. (2020). Content and correlation of polyphenolic compounds, bioelements and antiradical activity in black elder berries (Sambucus nigra L.). J. Elem., 25(2), 595–605. https://doi.org/10.5601/jelem.2019.24.1.1829 DOI: https://doi.org/10.5601/jelem.2019.24.1.1829

Ran, H., Yanyan, L., Cui, W., Yanan, C. (2020). Phylogenetic and comparative analyses of complete chloroplast genomes of chinese Viburnum and Sambucus (Adoxaceae). Plants, 9(9), 1143. https://doi.org/10.3390/plants9091143 DOI: https://doi.org/10.3390/plants9091143

Saifullah, M., McCullum, R., McCluskey, A., Vuong, Q. (2019). Effects of different drying methods on extractable phenolic compounds and antioxidant properties from lemon myrtle dried leaves. Heliyon, 5, e03044. https://doi.org/10.1016/j.heliyon.2019.e03044 DOI: https://doi.org/10.1016/j.heliyon.2019.e03044

Schön, C., Mödinger, Y., Krüger, F., Doebis, C., Pischel, I., Bonnländer, B. (2021). A new high-quality elderberry plant extract exerts antiviral and immunomodulatory effects in vitro and ex vivo. Food Agric. Immun., 32(1), 650–662. https://doi.org/10.1080/09540105.2021.1978941 DOI: https://doi.org/10.1080/09540105.2021.1978941

Sedláčková, V., Grygorieva, O., Fatrcová-Šramková, K., Vergun, O., Vinogradova, Y., Ivanišová, E., Brindza, J. (2018). The morphological and antioxidant characteristics of inflorescences within wild-growing genotypes of elderberry (Sambucus nigra L.). Potravin. Slovak J. Food Sci., 12(1), 444–453. https://doi.org/https://doi.org/10.5219/919 DOI: https://doi.org/10.5219/919

Simkin, A.J. (2021). Carotenoids and apocarotenoids in Planta: their role in plant development, contribution to the flavour and aroma of fruits and flowers, and their nutraceutical benefits. Plants, 10, 2321. https://doi.org/10.3390/plants10112321 DOI: https://doi.org/10.3390/plants10112321

Singleton, V., Rossi, J. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 16, 144–158.

Stefaniak, A., Grzeszczuk, M. (2020). Effect of drying temperature and method of extract prearation on antioxidant activity of edible flowers of some oranamental plant species. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment. Pisc. Zootech., 354(53)1, 17–28. https://doi.org/10.21005/AAPZ2020.53.1.02 DOI: https://doi.org/10.21005/AAPZ2020.53.1.02

Shi, L., Kim, E., Yang, L., Huang, Y., Ren, N., Li, B., He, P., Tu, Y., Wu, Y. (2021). Effect of a combined microwave-assisted drying and air drying on improving active nutraceutical compounds, flavor quality, and antioxidant properties of Camellia sinensis L. (cv. Longjing 43) flowers. Food Quality and Safety, 5, 1–7. https://doi.org/10.1093/fqsafe/fyaa040 DOI: https://doi.org/10.1093/fqsafe/fyaa040

Thomas, A.L., Chen, Y.-C., Rottinghaus, G.E., Malone, A.M., Byers, P.L., Applequist, W.L., Finn, C.E. (2008). Occurrence of rutin and chlorogenic acid in elderberry leaf, flower, and stem in response to genotype, environment, and season. Acta Hort. 765, 197–206. DOI: https://doi.org/10.17660/ActaHortic.2008.765.24

Torabian, G., Valtchev, P., Adil, Q., Dehghani, F. (2019). Anti-influenza activity of elderberry (Sambucus nigra). J. Funct. Foods, 54, 353–360. https://doi.org/10.1016/j.jff.2019.01.031 DOI: https://doi.org/10.1016/j.jff.2019.01.031

Viapiana, A., Wesołowski, M. (2017). The phenolic contents and antioxidant activities of infusions of Sambucus nigra L. Plant. Foods Hum. Nutr., 72, 82–87. https://doi.org/10.1007/s11130-016-0594-x DOI: https://doi.org/10.1007/s11130-016-0594-x

Wettstein, D. (1957). Chlorophyll-letale und der submikroskopische Formwechsel der Plastiden. Exp. Cell Res., 12, 427–434. https://doi.org/10.1016/0014-4827(57)90165-9 DOI: https://doi.org/10.1016/0014-4827(57)90165-9

Yen, G., Chen, H. (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem., 43, 27–32. DOI: https://doi.org/10.1021/jf00049a007

Youdim, M., Martin, A., Joseph, J. (2000). Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress. Free Radic. Biol. Med., 29(1), 51–60. DOI: https://doi.org/10.1016/S0891-5849(00)00329-4

Download

Published
2022-04-29



Bożena Cwalina-Ambroziak 
Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Michała Oczapowskiego 2, 10-719 Olsztyn Poland https://orcid.org/0000-0002-8841-5416



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)