USE OF LIGHT TO CONTROL THE GROWTH OF Salvia splendens Sellow ex Roem. et Schult. SEEDLINGS

Anita Woźny

University of Technology and Life Sciences in Bydgoszcz


In many ornamental plant species the light spectrum can, to a varied extent, modify growth and flowering. The literature offers information on the inhibition of
growth of seedlings and cuttings of ornamental plants exposed to blue light. In this paper was investigated the effect of light of a varied spectral composition on the growth of scarlet sage (Salvia splendens) seedling. The plants were cultivated in the growth chamber at the 16-hour and 20-hour day. The following kinds of light were used: daylight – similar in its spectral composition to natural light, blue and mixed light – with the same share of daylight and blue light as well as with 75% share of blue light. The intensity of the quantum irradiance in the range PAR was the same for all the experiment combinations and it was 110 μmol · m-2 · s-1. The scarlet sage grown in mixed light with the advantage of blue light was lower than the plants produced in daylight both at the 16-hour and 20-hour day.


spectral composition of light, plant height, fresh and dry weight of steam and leaves

Bachman G.R., McMahon M.J., 2006. Day and night temperature differential (DIF) or absence of farred light alters cell elongation in ‘Celebrity White’ petunia. J. Amer. Soc. Hort. Sci. 131(3), 309–312.
Cerny T.A., Faust J., Layne D., Rajapakse N.C., 2003. Flower development of photoperiod sensitive species under modified light environments. J. Amer. Soc. Hort. Sci. 128, 486–491.
Heo J., Lee C., Chakrabarty D., Peak K., 2002a. Growth responses of marigold and salvia plants as affected by monochromic or mixture radiation provided by a light-emitting diode (LED). Plant Growth Regulation 38, 225–230.
Heo J., Lee C., Peak K., 2002b. Characteristic of growth and flowering on some bedding plants grown in mixing fluorescent tube and light-emitting diode. Acta Hort. 580, 77–82.
Ilias I.F., Rajapakse N., 2005. The effects of end-of-the-day red and far-red light on growth and flowering of Petunia × hybrida ‘Countdown Burgundy’ grown under photoselective films. HortScience 40(1), 131–133.
Kim H.H., Heins R.D., Carlson W.H., 2002. Development and flowering of petunia grown in farred deficient light environment. Acta Hort. 580, 127–135.
Kłyszejko-Stefanowicz L., 1999. Exercise Biochemistry. Scientific Publishers OWN.
Krumfolz L.A., Wilson S.B., Rajapakse N.C., 2001. Growth control of salvia ‘Indigo spires’ by photoselective plastic films. Proc. Fla. State Hort. Soc. 114, 241–243.
McMahon M.J., Kelly J.W., 1999. CuSO4 filters influence flowering of chrysanthemum cv. Spears. Sci. Hort. 79, 207–215.
Rajapakse N.C., Kelly J.W., 1994. Influence of spectral filters on growth and postharvest quality of potted miniature roses. Sci. Hort.56, 245–255.
Rajapakse N.C., Young R.E., McMahon M.J., Oi R., 1999. Plant height control by photoselective filters: Current status and future prospects. HortTechnology 9(4), 618–624.
Runkle E.S., Heins R.D., 2002. Stem extension and subsequent flowering of seedlings growth under a film creating a far-red deficient environment. Sci. Hort. 96, 257–265.
Wettstein D., 1957. Formula of chlorophyll determination. Exp. Cell Res.12, 427–489.
Wilson S.B., Rajapakse N.C., 2001. Use of photoselective plastic films to control growth of three perennial salvias. J. Appl. Hort., 3(2), 71–74.


Anita Woźny 
University of Technology and Life Sciences in Bydgoszcz



Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.


Most read articles by the same author(s)