QUANTITATIVE RELATIONS BETWEEN THE CONTENT OF SELECTED TRACE ELEMENTS IN SOIL EXTRACTED WITH 0.03 M CH3COOH OR 1 M HCL AND ITS TOTAL CONCENTRATION IN CARROT STORAGE ROOTS

Sylwester Smoleń

University of Agriculture in Kraków

Włodzimierz Sady

University of Agriculture in Kraków

Iwona Ledwożyw-Smoleń

University of Agriculture in Kraków



Abstract

There is an existing need for the development of rapid and easy-to-perform methods for analyzing chemical composition of soil basing on simultaneous extraction of many elements in a single solution. Furthermore, it is desirable that mineral concentration determined in soil using these methods should be significantly correlated with its content in plants. Many researches indicated that soil concentration of heavy metals and trace elements after extraction using 0.01 M CaCl2 did not reflect its content in vegetable plants.. The aim of the research was to determine the relation between soil content of: Al, B, Ba, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Sr, Ti, V and Zn extracted in 0.03 M CH3COOH as well as 1 M HCl and its content in carrot storage roots. In 2008–2009 studies were carried out on soil samples after carrot cultivation (from 0–30 cm, 30–60 cm and 60–90 cm layers) as well as on carrot storage roots grown on the same soil site. In total, analysis of chemical composition (with respect to the content of tested elements) comprised: 112 samples of carrot storage roots, 112 soil samples from 0–30 cm layer as well
as 48 soil samples from 30–60 cm and 60–90 cm layers. Higher applicability of soil extraction with 0.03 M CH3COOH (commonly used for macro element chlorides and boron determination) in comparison to extraction with 1 M HCl was demonstrated in reference to the estimation of the relation between soil and carrot content of: Al, B, Ba, Cd, Cr, Cu, Li, Ni, Sr, Ti and Zn. Application of 1 M HCl gave relatively better results when compared to the extraction with 0.03 M CH3COOH with respect to calculated values of correlation coefficient for Co, Fe, Mn, Mo and Pb content in soil and carrot. Content of Co, Mo, Pb and V in soil after extraction using 0.03 M CH3COOH was below the limits of its detection using ICP-OES spectrometer. No relation was found between vanadium content in soil (analyzed after extraction with 1 M HCl) and its content in carrot storage roots.

Keywords:

0.03 M acetic acid, 1 M hydrochloric acid, trace elements, carrot

Chłopecka A., 1994. Wpływ różnych związków kadmu, miedzi, ołowiu i cynku na formy tych metali w glebie oraz na ich zawartość w roślinach. IUNG Seria R, Puławy.
Davies B.E., 1992. Inter-relationships between soil properties and the uptake of cadmium, copper, lead and zinc from contaminated soils by radish (Raphanus sativus L.). Water Air Soil Poll. 63, 331–342.
Gorlach E., Curyło T., Gambuś F., Grzywnowicz I., Jasiewicz C., Kopeć M., Mazur B., Olkuśnik S., Rogóż A., Wiśniowska-Kielian B., 1999. Przewodnik do ćwiczeń z chemii rolnej. Wyd. AR w Krakowie.
Houba V.J.G., Novozamsky I., Temminghoff E., 1997. Soil analysis procedures. Extraction with 0.01 M CaCl2 (Soil and Plant Analysis, Part 5A). Wageningen Agricultural University, The Netherlands.
Komosa A., 2000. Nowoczesne diagnozowanie potrzeb nawozowych roślin sadowniczych. Mat. konf. VIII Ogólnopolskiej Konferencji Naukowej pt. „Efektywność Stosowania nawozów w uprawach ogrodniczych. Zmiany ilościowe i jakościowe w warunkach stresu. Warszawa 20–21 czerwca 2000, 11–16.
Komosa A., Stafecka A., 2002. Zawartości wskaźnikowe składników pokarmowych dla gleb sadowniczych analizowanych metodą uniwersalną. Rocz. AR w Poznaniu, Ogrod. 35, 105–116.
Lindsey W.L., Schwab A.P., 1982. The chemistry of iron in soils and its availability to plants. J. Plant Nutr. 5, 821–840.
McLaughlin M.J., Maier N.A., Rayment G.E., Sparrow L.A., Berg G., Mckay A., Milham P., Merry R.H., Smart M.K., 1997. Cadmium in Australian potato tubers and soils. J. Environ. Qual. 26, 1644–1649.
Nowak J.S., Strojny Z., 2004. Metody analizy chemicznej podłoży ogrodniczych stosowane w Holandii i w Niemczech w celach diagnostycznych. Rocz. AR w Poznaniu 356, Ogrod. 37, 255–259.
Nowosielski O. 1974. Metody oznaczania potrzeb nawożenia. Wyd. II, PWRiL, Warszawa.
Pasławski P., Migaszewski Z.M., 2006. The quality of element determinations in plant materials by instrumental methods. Polish J. Environ. Stud. 15(2a) Part I, 154–164.
Quevauviller P., Rauret G., Muntau H., Ure A.M., Rubio R., López-Sánchez J.F., Fiedler H.D., Griepink B., 1994. Evaluation of a sequential extraction procedure for the determination of extractable trace metal contents in sediments. Fresenius J. Anal. Chem. 349, 808–814.
Sady W., 2006. Nawożenie warzyw polowych. Plantpress, Kraków.
Sady W., Rożek S., Domagała I., Kołodziej M., 1998. Porównanie metod ekstrakcji Cu, Zn, Mn, Fe, i Cd z gleb o zróżnicowanych właściwościach fizykochemicznych. Zesz. Nauk. AR w Krakowie 333 (57), 833–836.
Sękara A., Poniedziałek M., 1999. Akumulacja metali ciężkich przez wybrane warzywa korzeniowe uprawiane wokół aglomeracji krakowskiej. Część I – kadm, miedź, ołów i cynk. Zesz. Prob. Post. Nauk Roln. 466, 397–411.
Smoleń S., 2009. Wpływ nawożenia jodem i azotem na skład mineralny marchwi. Ochr. Środ. i Zas. Nat. 40, 286–292.
Smoleń S., Sady W., 2006. The content of Cd, Cu and Zn in carrot storage roots as related to differentiated nitrogen fertilization and foliar nutrition. Polish J. Envir. Stud. 15 (2A, Part II), 503–509.
Smoleń S., Sady W., 2007a. The effect of nitrogen fertilizer form and foliar application on Cd, Cu and Zn concentrations in carrot. Folia Hort. 19 (1), 87–96.
Smoleń S., Sady W., 2007b. Wpływ nawozu azotowego z inhibitorem nitryfikacji oraz dokarmiania dolistnego na zawartość suchej masy, Cd, Cu i Zn w marchwi. Ochr. Środ. i Zas. Nat. 32: 81–86.
Smoleń S., Sady W., 2008. The effect of foliar nutrition with nitrogen, molybdenum, sucrose and benzyladenine on the contents of dry weight, Cd, Cu and Zn in carrot. Veget. Crops Res. Bull. 68, 135–144.
Smoleń S., Sady W., 2009. The effect of nitrogen fertilizer form and foliar application on concentrations of twenty five elements in carrot. Folia Hort. 21 (1), 3–16.
Strojny Z., Nowak J.S., 2004. Zasady metodyki analizy chemicznej podłoży ogrodniczych przyjętej przez Unię Europejską. Rocz. AR w Poznaniu 356, Ogrodnictwo 37, 279–286.
Tyksiński W., 1985. Reakcja sałaty szklarniowej uprawianej w torfie na zróżnicowane nawożenie mikroelementami. Cz. II. Zmiany zawartości mikroelementów w podłożu. Prace Kom. Nauk Roln. i Leś., 59, 243–251.
Tyler G., Olsson T., 2001 Concentrations of 60 elements in the soil solution as related to the soil acidity. Europ. J. Soil Sci. 52, 151–165.
Westerman R.L., 1990. Soil testing and plant analysis. 3rd edition. Soil. Sci. Soc. Amer., Madison, Wi.
Download

Published
2010-12-31



Sylwester Smoleń 
University of Agriculture in Kraków
Włodzimierz Sady 
University of Agriculture in Kraków
Iwona Ledwożyw-Smoleń 
University of Agriculture in Kraków



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)

1 2 > >>