QUANTITATIVE RELATIONS BETWEEN THE CONTENT OF SELECTED TRACE ELEMENTS IN SOIL EXTRACTED WITH 0.03 M CH3COOH OR 1 M HCL AND ITS TOTAL CONCENTRATION IN LETTUCE AND SPINACH

Sylwester Smoleń

University of Agriculture in Kraków

Włodzimierz Sady

University of Agriculture in Kraków

Iwona Ledwożyw-Smoleń

University of Agriculture in Kraków



Abstract

Numeorus analytical methods have been developed for determination of micronutrients, heavy metals and trace elements in soil. However, rapid and easy-to-perform methods are still needed for chemical composition analysis of soil that would be based on simultaneous extraction of multiple elements. Furthermore, it would be beneficial if element concentration in soil using these methods were correlated with its concentration in plants. The aim of the study was to determine the interdependency between soil concentration of: Al, B, Ba, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Sr, Ti, V and Zn extracted using 0.03 M CH3COOH or 1 M HCl and its content in spinach leaves and lettuce heads. In reference to Al, B, Ba, Cd, Mn, Ni and Zn level in spinach as well as Al, B, Ba, Cd, Cr, Fe, Li and Ti accumulation in lettuce, higher values of correlation coefficients were calculated for soil and plant content of these elements after extraction with 0.03 M CH3COOH
than 1 M HCl. In the case of: Cr, Cu, Fe, Li and Sr in spinach as well as Ni and Pb in lettuce, higher values of this parameter were found for 1 M HCl soil extraction when compared with the other tested method. No significant relation was found between Pb and Ti accumulation in spinach as well as Cu Mn, Sr or Zn content in lettuce and its level in soil irrespective of the extraction method (0.03 M CH3COOH or 1 M HCl).

Keywords:

0.03 M acetic acid, 1 M hydrochloride acid, Rinkis method, trace elements

Bosiacki M., 2008. Accumulation of cadmium in selected species of ornamental plants. Acta Sci. Pol. Hortorum Cultus 7 (2), 21–31.
Bosiacki M., 2009. Phytoextraction of cadmium and lead by selected cultivars of Tagetes erecta L. Part II. Contents of Cd and Pb in plants. Acta Sci. Pol. Hortorum Cultus 8 (2), 15–26.
Davies B.E., 1992. Inter-relationships between soil properties and the uptake of cadmium, copper, lead and zinc from contaminated soils by radish (Raphanus sativus L.). Water Air and Soil Poll. 63, 331–342.
Gerritse R.G., Van Driel W., Smilde K.W., Van Luit B., 1983. Uptake of heavy metals by crops in relation to their concentration in the soil solution. Plant and Soil 75, 393–404.
Gorlach E., Curyło T., Gambuś F., Grzywnowicz I., Jasiewicz C., Kopeć M., Mazur B., Olkuśnik S., Rogóż A., Wiśniowska-Kielian B., 1999. Przewodnik do ćwiczeń z chemii rolnej. Wyd. AR w Krakowie.
He Q.B., Singh B.R., 1993. Crop uptake of cadmium from phosphorus fertilizers: II. Relationship with extractable soil cadmium. Water Air Soil Poll. 74, 267–280.
Houba V.J.G., Novozamsky I., Temminghoff E., 1997. Soil analysis procedures. Extraction with 0.01 M CaCl2 (Soil and Plant Analysis, Part 5A). Wageningen Agricultural University, The Netherlands.
Komosa A., 2000. Nowoczesne diagnozowanie potrzeb nawozowych roślin sadowniczych. Mat. konf. VIII Ogólnopolskiej Konferencji Naukowej pt. „Efektywność Stosowania nawozów w uprawach ogrodniczych. Zmiany ilościowe i jakościowe w warunkach stresu. Warszawa 20–21 czerwca 2000, 11–16.
Komosa A., Stafecka A., 2002. Zawartości wskaźnikowe składników pokarmowych dla gleb sadowniczych analizowanych metodą uniwersalną. Rocz. AR w Poznaniu 341, Ogrodnictwo 35, 105–116.
McLaughlin M.J., Maier N.A., Rayment G.E., Sparrow L.A., Berg G., Mckay A., Milham P., Merry R.H., Smart M.K., 1997. Cadmium in Australian potato tubers and soils. J. Environ. Qual. 26, 1644–1649.
Nowak J.S., Strojny Z., 2004. Metody analizy chemicznej podłoży ogrodniczych stosowane w Holandii i w Niemczech w celach diagnostycznych. Rocz. AR w Poznaniu 356, Ogrodnictwo 37, 255–259.
Nowosielski O., 1974. Metody oznaczania potrzeb nawożenia. Wyd. II. PWRiL, Warszawa.
Pasławski P., Migaszewski Z.M., 2006. The quality of element determinations in plant materials by instrumental methods. Polish J. Environ. Stud. 15(2a) Part I, 154–164.
Ramos I., Esteban E., Lucena J.J., Garate A., 2002. Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction. Plant Scien. 162, 761–767.
Sady W., 2006. Nawożenie warzyw polowych. Plantpress, Kraków.
Sady W., Rożek S., Domagała I., Kołodziej M., 1998. Porównanie metod ekstrakcji Cu, Zn, Mn, Fe, i Cd z gleb o zróżnicowanych właściwościach fizykochemicznych. Zesz. Nauk. AR w Krakowie 333 (57), 833–836.
Sękara A., Poniedziałek M., Ciura J., Jędrszczyk E., 2005. Cadmium and lead accumulation and distribution in the organs of nine crops: implications of phytoremediation. Polish J. of Environ. Stud. 14 (4), 509–516.
Smoleń S., 2009. Wpływ nawożenia jodem i azotem na skład mineralny marchwi. Ochr. Środ. i Zas. Nat. In print.
Smoleń S., Sady W., 2006. The content of Cd, Cu and Zn in carrot storage roots as related to differentiated nitrogen fertilization and foliar nutrition. Polish J. Envir. Stud. 15 (2A, Part II), 503–509.
Smoleń S., Sady W., 2007a. The effect of nitrogen fertilizer form and foliar application on Cd, Cu and Zn concentrations in carrot. Folia Hort. 19 (1), 87–96.
Smoleń S., Sady W., 2007b. Wpływ nawozu azotowego z inhibitorem nitryfikacji oraz dokarmiania dolistnego na zawartość suchej masy, Cd, Cu i Zn w marchwi. Ochr. Środ. i Zas. Nat. 32: 81–86.
Smoleń S., Sady W., 2008. The effect of foliar nutrition with nitrogen, molybdenum, sucrose and benzyladenine on the contents of dry weight, Cd, Cu and Zn in carrot. Veget. Crops Res. Bull. 68, 135–144.
Smoleń S., Sady W., 2009. The effect of nitrogen fertilizer form and foliar application on concentrations of twenty five elements in carrot. Folia Hort. 21 (1), 3–16.
Smoleń S., Sady W., Ledwożyw I. 2010. Usefulness of soil extraction with 0.03 M CH3COOH and 1 M HCl for estimation of selected trace elements accumulation in carrot. Acta Sci. Pol. Hortorum Cultus 9(4), 3–12.
Starck J.R., 1992. Wpływ nawożenia na gromadzenie metali ciężkich w roślinach. Mat. Konf. Nauk. pt. „Stan i przyczyny skażenia żywności metalami”, Toruń 14–15 marca 1988, 19–23.
Strojny Z., Nowak J.S., 2004. Zasady metodyki analizy chemicznej podłoży ogrodniczych przyjętej przez Unię Europejską. Rocz. AR w Poznaniu 356, Ogrodnictwo 37, 279–286.
Tyksiński W., 1985. Reakcja sałaty szklarniowej uprawianej w torfie na zróżnicowane nawożenie mikroelementami. Cz. II. Zmiany zawartości mikroelementów w podłożu. Prace Komisji Nauk Roln. i Leśnych. LIX, 243–251.
Tyler G., Olsson T., 2001 Concentrations of 60 elements in the soil solution as related to the soil acidity. Europ. J. Soil Sci. 52, 151–165.
Westerman R.L., 1990. Soil testing and plant analysis. 3rd edition. Soil. Sci. Soc. Amer., Madison, Wi.
Download

Published
2010-12-31



Sylwester Smoleń 
University of Agriculture in Kraków
Włodzimierz Sady 
University of Agriculture in Kraków
Iwona Ledwożyw-Smoleń 
University of Agriculture in Kraków



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)

1 2 > >>