PACLOBUTRAZOL DEPENDENT SALT TOLERANCE IS RELATED TO CLC1 AND NHX1 GENE EXPRESSION IN SOYBEAN PLANTS

Burcu Seckin Dinler

Sinop University, Faculty of Arts and Sciences, Department of Biology, Sinop, Turkey
http://orcid.org/0000-0001-6289-380X

Hatice Cetinkaya

Sinop University, Faculty of Arts and Sciences, Department of Biology, Sinop, Turkey
http://orcid.org/0000-0002-9792-5928

Iskren Sergiev

Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
http://orcid.org/0000-0002-2420-9146

Elena Shopova

Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
http://orcid.org/0000-0002-1607-0105

Dessislava Todorova

Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
https://orcid.org/0000-0001-7100-834X


Abstract

Paclobutrazol (PBZ) enhances plant resistance to salt stress in two ways: directly, by straight clearance of reactive oxygen species; and indirectly by enhancing antioxidant enzyme activity, photosynthetic efficiency, and metabolite content, and by regulating transcription factors associated with stress. However, the regulatory effects of PBZ under salt stress in soybean are still not well explained and need further investigation. With this aim, the combination effect of salinity (250 mM NaCl) and three different doses of PBZ (5, 10 and 20 ppm) on physiological, biochemical and molecular traits of soybean (Glycine max L.) leaves were studied in soil experiments. Furthermore, physiological parameters (relative growth rate, relative water content), chlorophyll, malondialdehyde (MDA), hydrogen peroxide (H2O2) content and as well as enzymatic antioxidants (SOD, POX, APX, CAT and GST), ion content (Na, Cl) and soybean Na+/H+ antiporter GmNHX1 and chloride channel GmCLC1 gene expressions were investigated. The results showed that PBZ caused a reduction in salt-induced damages and an increase in biomass yield, water status, and chlorophyll. Moreover, PBZ regulated enzymatic antioxidants and alleviated the oxidative damages under salinity. In this study, for a first time it was determined that PBZ increased both GmNHX1 (ABA dependent or independent) and GmCLC1 (ABA independent) gene expressions and reduced Na and Cl concentrations in soybean under salinity. In conclusion, PBZ plays a role as a regulator and stimulant in salt stress response by mostly regulating ion balance in soybean leaves.

Keywords:

GmNHX1, GmClC1, paclobutrazol, soybean, salinity

Agha, M.S., Abbas, M.A., Sofy, M.R., Haroun, S.A., Mowafy, A.M. (2021). Dual inoculation of Bradyrhizobium and Enterobacter alleviates the adverse effect of salinity on Glycine max seedling. Not. Bot. Horti Agrobot. Cluj-Napoca, 49(3), 12461–12461. https://doi.org/10.15835/nbha49312461 DOI: https://doi.org/10.15835/nbha49312461

Alexieva, V., Sergiev, I., Mapelli, S., Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24, 1337–1344. https://doi.org/10.1046/j.1365-3040.2001.00778.x DOI: https://doi.org/10.1046/j.1365-3040.2001.00778.x

Aly, A.A., Latif, H.H. (2011). Differential effects of paclobutrazol on water stress alleviation through electrolyte leakage, phytohormones, reduced glutathione and lipid peroxidation in some wheat genotypes (Triticum aestivum L.) grown in-vitro. Rom. Biotech. Lett., 6, 6710–6721.

Bergmeyer, H.U. (1955). Measurement of catalase activity. Biochem. Z, 327(4), 255.

Beauchamp, C., Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem., 44, 276–287. https://doi.org/10.1016/0003-2697(71)90370-8 DOI: https://doi.org/10.1016/0003-2697(71)90370-8

Fletcher, R.A., Gilley, A., Sankhal, N., Davis, T. (2000). Triazoles as plant growth regulators and stress protectants. Hortic. Rev. 24, 55–138. DOI: https://doi.org/10.1002/9780470650776.ch3

Fletcher, R., Hofstra, G. (1990). Improvement of uniconazole-induced protection in wheat seedlings. J. Plant Growth Regul., 9, 207–212. DOI: https://doi.org/10.1007/BF02041964

Fletcher, R.A., Nath, V. (1984). Triadimefon reduces transpiration and increases yield in stressed plants. Physiol. Plant., 62, 422–424. https://doi.org/10.1111/j.1399-3054.1984.tb04596.x DOI: https://doi.org/10.1111/j.1399-3054.1984.tb04596.x

Forghani, A.H., Almodares, A., Ehsanpour, A.A. (2020). The role of gibberellic acid and paclobutrazol on oxidative stress responses induced by in vitro salt stress in sweet sorghum. Russian J. Plant Physiol., 67(3), 555–563. https://doi.org/10.1134/S1021443720030073 DOI: https://doi.org/10.1134/S1021443720030073

Habig, W.H., Pabst, M.J., Jakoby, W.B. (1974). Glutathione S-transferase(s): the first enzymatic step in mercapturic acid formation. J. Biol. Chem., 249, 7130–7139. https://doi.org/10.1016/S0021-9258(19)42083-8 DOI: https://doi.org/10.1016/S0021-9258(19)42083-8

Herzog, V., Fahimi, H. (1973). Determination of the activity of peroxidase. Anal. Biochem., 55, 554–562. https://doi.org/10.4161/psb.23681.12 DOI: https://doi.org/10.1016/0003-2697(73)90144-9

Hoagland, D.R., Arnon, D.I. (1950). The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stn., 347, p. 1.

Hunt, R., Causton, D.R., Shipley, B., Askew, A.P. (2002). A modern tool for classical plant growth analysis. Ann. Bot. 90(4), 485–488. https://doi.org/10.1093/aob/mcf214 DOI: https://doi.org/10.1093/aob/mcf214

Johnson, C.M., Ulrich, A. (1959). Analytical methods for use in plant analysis. Circ. Calif. Agric. Exp. Stat.

Jungklang, J., Saengnil, K. (2012). Effect of paclobutrazol on patumma cv. Chiang Mai Pink under water stress, Songklanakarin J. Sci. Technol., 34(4), 361–366. https://doi.org/10.1016/j.sjbs.2015.09.017 DOI: https://doi.org/10.1016/j.sjbs.2015.09.017

Kamran, M., Ahmad, S., Ahmad, I., Hussain, I., Meng, X., Zhang, X., Javed, T., Ullah, M., Ding, R., Xu, P., Gu, W., Han, Q. (2020). Paclobutrazol application favors yield improvement of maize under semiarid regions by delaying leaf senescence and regulating photosynthetic capacity and antioxidant system during grain-filling stage. Agronomy, 10(2), 187. DOI: https://doi.org/10.3390/agronomy10020187

Keutgen, A.J., Pawelizik, E. (2008). Quality and nutritional value of strawberry fruit under long term salt stress. Food Chem., 107, 1413–1420. DOI: https://doi.org/10.1016/j.foodchem.2007.09.071

Khunpon, B., Suriyan, C.U., Faiyue, B., Uthaibutra, J., Saengnil, K. (2019). Regulation on antioxidant defense system in rice seedlings (Oryza sativa L. ssp. indica cv.‘Pathumthani 1’) under salt stress by paclobutrazol foliar application. Not. Bot. Horti Agrobot. Cluj Napoca, 47(2), 368–377. DOI: https://doi.org/10.15835/nbha47111282

Kramer, G., Norman, H., Krizek, D., Mirecki, R. (1991). Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber. Phytochem., 30, 2101–2108. DOI: https://doi.org/10.1016/0031-9422(91)83595-C

Kuandykova, E., Suleimenova, N., Kurmanbayeva, M., Makhamedova, B., Raimbekova, B., Zhanibekova, A. (2020). Efficiency of bioecological features of soybean in increasing soil fertility and its productivity in the conditions of south-east Kazakhstan. Eurasia J. Biosci. 14(1), 493–500.

Li, W.Y.F., Wong, F.L., Tsaı, S.N., Phang, T.H., Shao, G., Lam, H.M. (2006). Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY) – 2 cells. Plant Cell Environ. 29(6), 1122–1137. https://doi.org/10.1111/j.1365-3040.2005.01487.x DOI: https://doi.org/10.1111/j.1365-3040.2005.01487.x

Lichtenthaler, H.K., Buschmann, C. (1987). Chlorophyll fluorescence spectra of green bean leaves. J. Plant Physiol. 129(1–2), 137–147. https://doi.org/10.1016/S0176-1617(87)80110-4 DOI: https://doi.org/10.1016/S0176-1617(87)80110-4

Mathis, W.T. (1956). Report on the flame photometric determination of potassium and sodium in plant tissue. JAMA, 39, 419. DOI: https://doi.org/10.1093/jaoac/39.2.419

Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22(5), 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232 DOI: https://doi.org/10.1093/oxfordjournals.pcp.a076232

Nouriyani, H., Majidi, E., Seyyednejad, S.M., Siadat, S.A., Naderi, A. (2012). Effect of paclobutrazol under different levels of nitrogen on some physiological traits of two wheat cultivars (Triticum aestivum L.). W. Applied Sci. J. 16(1), 01–06. https://doi.org/10.3390/horticulturae4010005 DOI: https://doi.org/10.3390/horticulturae4010005

Özmen, A.D., Özdemir, F., Türkan, I. (2003). Effects of paclobutrazol on response of two barley cultivars to salt stress. Biol. Plant., 46, 263–268. DOI: https://doi.org/10.1023/A:1022862929881

Papiernik, S.K., Grieve, C.M., Lesch, S.M., Yates, S.R. (2005). Effects of salinity, imazethapyr, and chlorimuron application on soybean growth and yield. Com. Soil Science Plant Anal., 36(7–8), 951–967. https://doi.org/10.1081/CSS-200050280 DOI: https://doi.org/10.1081/CSS-200050280

Phang, T.H., Shao, G., Lam, H.M. (2008). Salt tolerance in soybean. J. Integr. Plant Biol., 50(10), 1196–1212. https://doi.org/10.1111/j.1744-7909.2008.00760.x DOI: https://doi.org/10.1111/j.1744-7909.2008.00760.x

Poku, S.A., Seçgin, Z., Kavas, M. (2019). Overexpression of Ks-type dehydrins gene OeSRC1 from Olea europaea increases salt and drought tolerance in tobacco plants. Mol. Biol. Reports., 46(6), 5745–5757. https://doi.org/10.1007/s11033-019-05008-x DOI: https://doi.org/10.1007/s11033-019-05008-x

Shaki, F., Ebrahimzadeh, Maboud. H., Niknam, V. (2018). Penconazole alleviates salt-induced damage in safflower (Carthamus tinctorius L.) plants. J. Plant Int., 13(1), 420–427. https://doi.org/10.1080/17429145.2018.1491648 DOI: https://doi.org/10.1080/17429145.2018.1491648

Smart, R.E., Bingham, G.E. (1974). Rapid estimates of relative water content. Plant Physiol., 53, 258–260. https://doi.org/10.1104/pp.53.2.258 DOI: https://doi.org/10.1104/pp.53.2.258

Sofy, M.R., Elhindi, K.M., Farouk, S., Alotaibi, M.A. (2020). Zinc and paclobutrazol mediated regulation of growth, upregulating antioxidant aptitude and plant productivity of pea plants under salinity. Plants, 9(9), 1197. https://doi.org/10.3390/plants9091197 DOI: https://doi.org/10.3390/plants9091197

Sofy, M.R. (2016). Effect of gibberellic acid, paclobutrazol and zinc on growth, physiological attributes and the antioxidant defense system of soybean (Glycine max) under salinity stress. Int. J. Plant Res., 6, 64–87.

Srivastava, M., Kishor, A., Dahuja, A., Sharma, R.R. (2010). Effect of paclobutrazol and salinity on ion leakage, proline content and activities of antioxidant enzymes in mango (Mangifera indica L.). SciHortic, 125(4), 785–788. DOI: https://doi.org/10.1016/j.scienta.2010.05.023

Tesfahun, W., Yildiz, F. (2018). A review on: response of crops to paclobutrazol application. Cogent Food Agric., 4, 1525169. DOI: https://doi.org/10.1080/23311932.2018.1525169

Wei, P., Wang, L., Liu, A., Yu, B., Lam, H.M. (2016). GmCLC1 confers enhanced salt tolerance through regulating chloride accumulation in soybean. Front. Plant Sci., 7, 1082. https://doi.org/10.3389/fpls.2016.01082 DOI: https://doi.org/10.3389/fpls.2016.01082

Yan, W., Yanhong, Y., Wenyu, Y., Taiwen, Y., Weiguo, L., Xiaochun, W. (2013). Responses of root growth and nitrogen transfer metabolism to uniconazole, a growth retardant, during the seedling stage of soybean under relay strip intercropping system. Comm. Soil Sci. Plant Anal., 44, 3267–3280. https://doi.org/10.1080/00103624.2013.840838 DOI: https://doi.org/10.1080/00103624.2013.840838

Download

Published
2022-06-30



Burcu Seckin Dinler 
Sinop University, Faculty of Arts and Sciences, Department of Biology, Sinop, Turkey http://orcid.org/0000-0001-6289-380X
Hatice Cetinkaya 
Sinop University, Faculty of Arts and Sciences, Department of Biology, Sinop, Turkey http://orcid.org/0000-0002-9792-5928
Iskren Sergiev 
Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria http://orcid.org/0000-0002-2420-9146
Elena Shopova 
Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria http://orcid.org/0000-0002-1607-0105
Dessislava Todorova 
Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria https://orcid.org/0000-0001-7100-834X



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.