Agata Konarska

Agriculture University of Lublin


Roots of radish (Raphanus sativus L. var. radicula Pers.) of Rowa cv. seedlings grown in water cultures (pH 4.3) have been tested. Aluminum as AlCl3·6H2O has been applied at 0, 10, 20 and 40 mg·dm-3 concentrations. Inhibition of the growth of root elongation and the following changes of root morphology have been observed after aluminum treatment: browning and thickening, root cap elongation or falling off, bending of the apex root and cracks on its surface. Roots have been characterized with the change of hair length and lateral zones. First lateral roots occurred closer to the basal root apex than first hair. Reduction of hair length was noticed too. Atrophy of outer root tissues has been accompanied by great enlargement of cortex cells size as a result of their hypertrophy.


aluminum toxicity, radish, root, growth, morphology, anatomy

Bennet R.J., Steward A., 1999. The aluminum response network in perennial ryegrass (Lolium perenne): II. Water fluxes and ion transport. S. Afr. J. Plant Soil 16, 1, 1–9.
Blancaflor E.B., Jones D.L., Gilroy S., 1998. Alterations in the cytoskeleton accompany aluminum induced growth inhibition and morphological changes in primary roots of maize. Plant Physiol. 118, 159–172.
Brauner L., Bunkatsh F., 1987. Praktikum z fizjologii roślin. PWN, Warszawa.
Budiková S., 1999. Structural changes and aluminum distribution in maize root tissues. Biol. Plant. 42, 2, 259–266.
Budiková S., Mistrik I., 1999. Cultivar characterization of aluminum tolerance of barley seedlings by root growth, aluminum and callose distribution. Biol. Bratislava 54, 447–451.
Care D.A., 1995. The effect of aluminum concentration on root hairs in white clover (Trifolium repens L.). Plant Soil 171, 1, 159–162.
Ciamporová M., 2000. Diverse responses of root cell structure to aluminum stress. Plant Soil 226, 1, 113–116.
Clune T.S., Copeland L., 1999. Effects of aluminum on canola roots. Plant Soil 216, 27–33.
Comin J.J., Barloy J., Bourriec G., Trolard F., 1999. Differential effects of monomeric and polymeric aluminum on the root growth and on the biomass production of root and shoot of corn in solution culture. Eur. J. Agron. 11, 115–122.
Foy C.D., Orellana R.G., Schwartz J.W., Fleming A.L., 1974. Responses of genotypes to aluminum in acid soil and nutrient solution. Agron. J. 66, 293–296.
Horst W.J., Schmohl N., Kollmeier M., Baluška F., Sivaguru M., 1999. Does aluminum effect root growth of maize through interaction with the cell wall – plasma membrane – cytoskeleton continuum? Plant Soil 215, 2, 163–174.
Jones D.L., Kochian L.V., 1995. Role of calcium and other ions in directing root hair tip growth in Limnobium stoloniferum. Planta 197, 672–680.
Kobayashi Y., Yamamoto Y., Matsumoto H., 2004. Studies on the mechanism of aluminum tolerance in pea (Pisum sativum L.) using aluminum-tolerant cultivar Alaska and aluminum-sensitive cultivar Hyogo. Soil Sci. Plant Nutr. 50, 2, 197–204.
Kopcewicz J., Lewak S., 1998. Podstawy fizjologii roślin. Wydawnictwo Naukowe PWN, Warszawa 1998.
Lazof D.B., Goldsmith J.G., Rufty T.W., Linton R.W., 1996. The early entry of Al into cells of intact soybean roots. A comparison of three developmental root regions using secondary ion mass spectrometry imaging. Plant Physiol. 112, 3, 1289–1300.
Lenoble M.E., Blevins D.G., Sharp R.E., Cumbie B.G., 1996. Prevention of aluminum toxicity with supplemental boron. I. Maintenance of root elongation and cellular structure. Plant Cell Environ. 19, 1132–1142.
Llugany M., Poschenrieder C., Barceló J., 1995. Monitoring of aluminum – induced inhibition of root elongation in four cultivars differing in tolerance to aluminum and proton toxicity. Physiol. Plant. 93, 265–271.
Mangabeira P., Mushrifah I., Escaig F., Laffray D., Franca M.G., Galle P., 1999. Use of MISS microscopy and electron probe X-ray microanalysis to study the subcellural localization of aluminum in Vicia faba root cells. Cell Mol. Biol. 45, 4, 413–422.
McQuattie C.J., Schier G.A.,1990. Response of red spruce seedlings to aluminum toxicity in nutrient solution: alternations in root anatomy. Can. J. For. Res. 20, 1001–1011.
Michałek W., 1997. Zmiany w zawartości węglowodanów i kwasu askorbinowego w rzodkiewce wywołane stresem glinowym. Zesz. Probl. Post. Nauk Roln. 456, 217–223.
Pintro J.C., Barloy J., Fallavier P., 1996. Aluminum effects on the growth and mineral composition of corn plants cultivated in nutrient solution at low aluminum activity. J. Plant Nutr. 19, 729–741.
Sasaki M., Yamamoto Y., Matsumoto H., 1996. Lignin deposition induced by aluminum in wheat (Triticum aestivum) roots. Physiol. Plant. 96, 193–198.
Sivaguru M., Horst W.J., 1998. The distal part of the transition zone is the most aluminum – sensitive apical root zone of maize. Plant Physiol. 116, 1, 155–163.
Tabuchi A., Matsumoto H., 2001. Changes in cell–wall properties of wheat (Triticum aestivum) roots during aluminum - induced growth inhibition. Physiol. Plant. 112, 353–358.
Votrubovà O., Cernohorskà J., Hlidkovà R., Krobovà J., Eliàšovà K., 1997. The effect of aluminum on growth and structure of wheat root. J. Appl. Genet. 38B, 277–281.
Wilkins D.A., 1978. The measurement of tolerance to edaphic factors by means of root growth. New Phytol. 80, 623–633.
Wheeler D.M., 1994. Effects of growth period, plant age and changes in solution aluminum concentrations on aluminum toxicity in wheat. Plant Soil 166, 21–30.
Weryszko-Chmielewska E., Michońska M., Chwil M., Szadura M., 1999. Destrukcja tkanek korzeni dwóch odmian lędźwianu siewnego (Lathyrus sativus L.) w warunkach stresu glinowego. Annales UMCS, sec. EEE, 7, 71–79.


Agata Konarska 
Agriculture University of Lublin



Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.


Most read articles by the same author(s)