Metabolomic analysis of Chinese yam (Dioscorea polystachya Turczaninow) bulbils at different germination stages by UPLC-Q-TOF-MS

Xiaojin Ge

Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences; Henan Provincial Center for Engineering and Technology Research of Traditional Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
https://orcid.org/0009-0007-7510-6116

Xiangyang Li

Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences; Henan Provincial Center for Engineering and Technology Research of Traditional Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
https://orcid.org/0009-0006-6376-3453

Dandan Dai

Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences; Henan Provincial Center for Engineering and Technology Research of Traditional Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
https://orcid.org/0009-0000-5593-6330

Zhen Yang

Xixian Agricultural Science Research Institute
https://orcid.org/0009-0005-4250-9299

Yanhong Wang

Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences; Henan Provincial Center for Engineering and Technology Research of Traditional Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
https://orcid.org/0009-0001-0157-6242

Tiegang Yang

Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences; Henan Provincial Center for Engineering and Technology Research of Traditional Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
https://orcid.org/0000-0003-0119-3417

Guixiao La

Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences; Henan Provincial Center for Engineering and Technology Research of Traditional Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
https://orcid.org/0009-0001-7542-4532


Abstract

Bulbil germination is crucial to the survival of Chinese yam plants, the preservation of germplasm resources and the worldwide supply of food and natural medicine. There are still some unknowns regarding bulbil biochemical variations associated with germination. The metabolic changes during the germination of Chinese yam (Dioscorea polystachya Turczaninow) bulbils were studied using ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) at eight-time points covering all four phases of germination. It was determined that 27 metabolites, including organic acids, amino acids, sugars, lipid metabolites, phenolics and steroids, were responsible for the variation in the Chinese yam bulbil groups. A metabolomics pathway was proposed based on the identified metabolites. The main processes affected during germination were those related to carbohydrate metabolism, the TCA cycle, lipid metabolism, nitrogen metabolism, lipid metabolism and polyphenol metabolism. It is one of the earliest reports on the metabolite identification and profiling of Chinese yam bulbils at different germination stages.

Keywords:

Chinese yam bulbils, germination, metabolomics, UPLC-Q-TOF-MS, multivariate statistical analysis, metabolism pathway

Chandrasekaran, U., Liu, A. (2015). Stage-specific metabolization of triacylglycerols during seed germination of Sacha Inchi (Plukenetia volubilis L.). J. Sci. Food Agric. 95(8), 1764–1766. https://doi.org/10.1002/jsfa.6855 DOI: https://doi.org/10.1002/jsfa.6855

Chaniad, P., Tewtrakul, S., Sudsai, T., Langyanai, S., Kaewdana, K. (2020). Anti-inflammatory, wound healing and antioxidant potential of compounds from Dioscorea bulbifera L. bulbils. PLoS ONE, 15, e0243632. https://doi.org/10.1371/journal.pone.0243632 DOI: https://doi.org/10.1371/journal.pone.0243632

Chen, L., Wu, J.e., Li, Z., Liu, Q., Zhao, X., Yang, H. (2019). Metabolomic analysis of energy regulated germination and sprouting of organic mung bean (Vigna radiata) using NMR spectroscopy. Food Chem. 286, 87–97. https://doi.org/10.1016/j.foodchem.2019.01.183 DOI: https://doi.org/10.1016/j.foodchem.2019.01.183

Cho, J., Choi, H., Lee, J., Kim, M.-S., Sohn, H.-Y., Lee, D.G. (2013). The antifungal activity and membrane-disruptive action of dioscin extracted from Dioscorea nipponica. Biochim. Biophys. Acta, 1828(3), 1153–1158. https://doi.org/10.1016/j.bbamem.2012.12.010 DOI: https://doi.org/10.1016/j.bbamem.2012.12.010

Choi, K.-W., Um, S.H., Kwak, J.-H., Park, H.-J., Kim, K.-H., Moon, E.-Y., Kwon, S.-T., Pyo, S. (2012). Suppression of adhesion molecule expression by phenanthrene-containing extract of bulbils of Chinese yam in vascular smooth muscle cells through inhibition of MAPK, Akt and NF-κB. Food Chem. Toxicol. 50(8), 2792–2804. https://doi.org/10.1016/j.fct.2012.05.005 DOI: https://doi.org/10.1016/j.fct.2012.05.005

Dai, H., Fu, M., Yang, X., Chen, Q. (2016). Ethylene inhibited sprouting of potato tubers by influencing the carbohydrate metabolism pathway. J. Food Sci. Technol. 53(8), 3166–3174. https://doi.org/10.1007/s13197-016-2290-0 DOI: https://doi.org/10.1007/s13197-016-2290-0

Dessalegn, O. (2016). Propagation methods of yam (Dioscorea species) with special attention to in vitro propagation. J. Appl. Biotechnol. 4(1), 13. https://doi.org/10.5296/jab.v4i1.9031 DOI: https://doi.org/10.5296/jab.v4i1.9031

Drummond, C.P., Renner, T. (2022). Genomic insights into the evolution of plant chemical defense. Curr. Opin. Plant Biol. 68, 102254. https://doi.org/10.1016/j.pbi.2022.102254 DOI: https://doi.org/10.1016/j.pbi.2022.102254

Gu, E.-J., Kim, D.W., Jang, G.-J., Song, S.H., Lee, J.-I., Lee, S.B., Kim, B.-M., Cho, Y., Lee, H.-J., Kim, H.-J. (2017). Mass-based metabolomic analysis of soybean sprouts during germination. Food Chem. 217, 311–319. https://doi.org/10.1016/j.foodchem.2016.08.113 DOI: https://doi.org/10.1016/j.foodchem.2016.08.113

Gao, J., Ren, R., Wei, Y., Jin, J., Ahmad, S., Lu, C., Wu, J., Zheng, C., Yang, F., Zhu, G. (2020). Comparative metabolomic analysis reveals distinct flavonoid biosynthesis regulation for leaf color development of Cymbidium sinense ‘Red Sun’. Int. J. Mol. Sci. 21(5), 1869. https://doi.org/10.3390/ijms21051869 DOI: https://doi.org/10.3390/ijms21051869

Hill, C.B., Bacic, A., Roessner, U. (2014). LC-MS profiling to link metabolic and phenotypic diversity in plant mapping populations. Methods Mol. Biol. 1198, 29–41. https://doi.org/10.1007/978-1-4939-1258-2_3 DOI: https://doi.org/10.1007/978-1-4939-1258-2_3

Islam, M.T., Lee, B.-R., Das, P.R., La, V.H., Jung, H.-I., Kim, T.-H. (2018). Characterization of p-Coumaric acid-induced soluble and cell wall-bound phenolic metabolites in relation to disease resistance to Xanthomonas campestris pv. campestris in Chinese cabbage. Plant Physiol. Biochem. 125, 172–177. https://doi.org/10.1016/j.plaphy.2018.02.012 DOI: https://doi.org/10.1016/j.plaphy.2018.02.012

Keawkim, K., Lorjaroenphon, Y., Vangnai, K., Jom, K.N. (2021). Metabolite–flavor profile, phenolic content, and antioxidant activity changes in Sacha Inchi (Plukenetia volubilis L.) seeds during germination. Foods 10(10), 2476. https://doi.org/10.3390/foods10102476 DOI: https://doi.org/10.3390/foods10102476

Kim, H., Kim, O.-W., Ahn, J.-H., Kim, B.-M., Oh, J., Kim, H.-J. (2020). Metabolomic analysis of germinated brown rice at different germination stages. Foods 9(8), 1130. https://doi.org/10.3390/foods9081130 DOI: https://doi.org/10.3390/foods9081130

Kim, S.K., Lee, S.C., Lee, B.H., Choi, H.J., Lee, I.J. (2010). Bulbil formation and yield responses of chinese yam to application of gibberellic acid, mepiquat chloride and trinexapac-ethyl. J. Agron. Crop Sci. 189(4), 255–260. https://doi.org/10.1046/j.1439-037X.2003.00039.x DOI: https://doi.org/10.1046/j.1439-037X.2003.00039.x

Lebot, V., Faloye, B., Okon, E., Gueye, B. (2019). Simultaneous quantification of allantoin and steroidal saponins in yam (Dioscorea spp.) powders. J. Appl. Res. Med. Arom. Plants 13, 100200. https://doi.org/10.1016/j.jarmap.2019.02.001 DOI: https://doi.org/10.1016/j.jarmap.2019.02.001

Li, X., Liu, S., Qu, L., Chen, Y., Yuan, C., Qin, A., Liang, J., Huang, Q., Jiang, M., Zou, W. (2021). Dioscin and diosgenin: Insights into their potential protective effects in cardiac diseases. J. Ethnopharmacol. 274, 114018. https://doi.org/10.1016/j.jep.2021.114018 DOI: https://doi.org/10.1016/j.jep.2021.114018

Ma, J., Meng, X., Liu, Y., Yin, C., Zhang, T., Wang, P., Park, Y.-K., Jung, H.W. (2020). Effects of a rhizome aqueous extract of Dioscorea batatas and its bioactive compound, allantoin in high fat diet and streptozotocin-induced diabetic mice and the regulation of liver, pancreas and skeletal muscle dysfunction. J. Ethnopharmacol. 259, 112926. https://doi.org/10.1016/j.jep.2020.112926 DOI: https://doi.org/10.1016/j.jep.2020.112926

Mizuki, I., Ishida, K., Tani, N., Tsumura, Y. (2010). Finescale spatial structure of genets and sexes in the dioecious plant Dioscorea japonica, which disperses by both bulbils and seeds. Evol. Ecol. 24, 1399–1415. https://doi.org/10.1007/s10682-010-9396-z DOI: https://doi.org/10.1007/s10682-010-9396-z

Murty, Y.S., Purnima. (1983). Morphology, anatomy and development of bulbil in some dioscoreas. Proc. Plant Sci. 92, 443–449. https://doi.org/10.1007/BF03053017 DOI: https://doi.org/10.1007/BF03053017

Narula, A., Kumar, S., Bansal, K.C., Srivastava, P.S. (2003). In vitro micropropagation, differentiation of aerial bulbils and tubers and diosgenin content in Dioscorea bulbifera. Planta Med. 69(8), 778–779. https://doi.org/10.1055/s-2003-42781 DOI: https://doi.org/10.1055/s-2003-42781

Ninomiya, A., Murata, Y., Tada, M., Shimoishi, Y. (2008). Change in allantoin and arginine contents in Dioscorea opposita ‘Tsukuneimo’ during the growth. J. Japan. Soc. Hort. Sci. 73(6), 546–551. https://doi.org/10.2503/jjshs.73.546 DOI: https://doi.org/10.2503/jjshs.73.546

Nourimand, M., Todd, C.D. (2019). There is a direct link between allantoin concentration and cadmium tolerance in Arabidopsis. Plant Physiol. Biochem. 135, 441–449. https://doi.org/10.1016/j.plaphy.2018.11.016 DOI: https://doi.org/10.1016/j.plaphy.2018.11.016

Okagami, N. (1986). Dormancy in Dioscorea: different temperature adaptation of seeds, bulbils and subterranean organs in relation to north-south distribution. Bot. Mag. Tokyo 99, 15–27. https://doi.org/10.1007/BF02488619 DOI: https://doi.org/10.1007/BF02488619

Osuna, D., Prieto, P., Aguilar, M. (2015). Control of seed germination and plant development by carbon and nitrogen availability. Front. Plant Sci. 6, 1023. https://doi.org/10.3389/fpls.2015.01023 DOI: https://doi.org/10.3389/fpls.2015.01023

Padhan, B., Panda, D. (2020). Potential of neglected and underutilized yams (Dioscorea spp.) for improving nutritional security and health benefits. Front. Pharmacol. 11, 496. https://doi.org/10.3389/fphar.2020.00496 DOI: https://doi.org/10.3389/fphar.2020.00496

Qu, C., Zuo, Z., Cao, L., Huang, J., Liu, G. (2019). Comprehensive dissection of transcript and metabolite shifts during seed germination and post-germination stages in poplar. BMC Plant Biol. 19, 1–15. https://doi.org/10.1186/s12870-019-1862-3 DOI: https://doi.org/10.1186/s12870-019-1862-3

Rolland, F., Moore, B., Sheen, J. (2001). Sugar sensing and signaling in plants. Plant Cell 14(S1), S185-S205. https://doi.org/10.1105/tpc.010455 DOI: https://doi.org/10.1105/tpc.010455

Sherwin, T., Simon, E.W. (1969). The appearance of lactic acid in phaseolus seeds germinating under wet conditions. J. Exp. Bot., 776–785. https://doi.org/10.1093/jxb/20.4.776 DOI: https://doi.org/10.1093/jxb/20.4.776

Song, S., Chu, L., Liang, H., Chen, J., Liang, J., Huang, Z., Zhang, B., Chen, X. (2019). Protective effects of dioscin against doxorubicin-induced hepatotoxicity via regulation of Sirt1/FOXO1/NF-κb signal. Front. Pharmacol. 10, 1030. https://doi.org/10.3389/fphar.2019.01030 DOI: https://doi.org/10.3389/fphar.2019.01030

Sun, J., Jia, H., Wang, P., Zhou, T., Wu, Y., Liu, Z. (2019). Exogenous gibberellin weakens lipid breakdown by increasing soluble sugars levels in early germination of zanthoxylum seeds. Plant Sci. 280, 155–163. https://doi.org/10.1016/j.plantsci.2018.08.013 DOI: https://doi.org/10.1016/j.plantsci.2018.08.013

Tomková-Drábková, L., Psota, V., Sachambula, L., Leišová-Svobodová, L., Mikyška, A., Kučera, L. (2016). Changes in polyphenol compounds and barley laccase expression during the malting process. J. Sci. Food Agric. 96(2), 497–504. https://doi.org/10.1002/jsfa.7116 DOI: https://doi.org/10.1002/jsfa.7116

Walck, J.L., Cofer, M.S., Hidayati, S.N. (2010). Understanding the germination of bulbils from an ecological perspective: a case study on Chinese yam (Dioscorea polystachya). Ann. Bot. 106(6), 945–955. https://doi. org/10.1093/aob/mcq189 DOI: https://doi.org/10.1093/aob/mcq189

Wang, G., Wu, L., Zhang, H., Wu, W., Zhang, M., Li, X.F., Wu, H. (2016). Regulation of the phenylpropanoid pathway: a mechanism of selenium tolerance in peanut (Arachis hypogaea L.) Seedlings. J. Agric. Food Chem. 64(18), 3626–3635. https://doi.org/10.1021/acs.jafc.6b01054 DOI: https://doi.org/10.1021/acs.jafc.6b01054

Wang, P., Kong, C.-H., Sun, B., Xu, X.-H. (2012). Distribution and function of allantoin (5-ureidohydantoin) in rice grains. J. Agric. Food Chem. 60(11), 2793. https://doi.org/10.1021/jf2051043 DOI: https://doi.org/10.1021/jf2051043

Wu, X., Wang, Y., Tang, H. (2020). Quantitative metabonomic analysis reveals the germination-associated dynamic and systemic biochemical changes for mung-bean (Vigna radiata) seeds. J. Proteome Res. 19(6), 2457–2470. https://doi.org/10.1021/acs.jproteome.0c00181 DOI: https://doi.org/10.1021/acs.jproteome.0c00181

Wu, Z.G., Jiang, W., Tao, Z.-M., Pan, X.J., Yu, W.H., Huang, H.-L. (2019). Morphological and stage-specific transcriptome analyses reveal distinct regulatory programs underlying yam (Dioscorea alata L.) bulbil growth. J. Exp. Bot. 71(6), 1899–1914. https://doi.org/10.1093/jxb/erz552 DOI: https://doi.org/10.1093/jxb/erz552

Yu, Y.-G., Guo, X.-Y., Li, X.-Y., Dai, D.-D., Xu, X.-R., Ge, X.-J., Li, Y.-J., Yang, T.-G. (2021). Organ- and age-specific differences of Dioscorea polystachya compounds measured by UPLC-QTOF/MS. Chem. Biodiversity 18(2), e2000856. https://doi.org/10.1002/cbdv.202000856 DOI: https://doi.org/10.1002/cbdv.202000856

Zhang, S.R. (2014). Dioscoreaceae. In: Ai T.M. (ed.). Medicinal flora of China. 11th Ed. Peking, Peking University Medical Press, 48.

Zhang, B., Guo, K., Lin, L.S., Wei, C.X. (2018). Comparison of structural and functional properties of starches from the rhizome and bulbil of Chinese Yam (Dioscorea opposita Thunb.). Molecules 23(2), 427. https://doi.org/10.3390/molecules23020427 DOI: https://doi.org/10.3390/molecules23020427

Download

Published
2024-02-29



Xiaojin Ge 
Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences; Henan Provincial Center for Engineering and Technology Research of Traditional Chinese Medicine, Zhengzhou, Henan 450046, P.R. China https://orcid.org/0009-0007-7510-6116
Xiangyang Li 
Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences; Henan Provincial Center for Engineering and Technology Research of Traditional Chinese Medicine, Zhengzhou, Henan 450046, P.R. China https://orcid.org/0009-0006-6376-3453
Dandan Dai 
Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences; Henan Provincial Center for Engineering and Technology Research of Traditional Chinese Medicine, Zhengzhou, Henan 450046, P.R. China https://orcid.org/0009-0000-5593-6330
Zhen Yang 
Xixian Agricultural Science Research Institute https://orcid.org/0009-0005-4250-9299
Yanhong Wang 
Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences; Henan Provincial Center for Engineering and Technology Research of Traditional Chinese Medicine, Zhengzhou, Henan 450046, P.R. China https://orcid.org/0009-0001-0157-6242
Tiegang Yang 
Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences; Henan Provincial Center for Engineering and Technology Research of Traditional Chinese Medicine, Zhengzhou, Henan 450046, P.R. China https://orcid.org/0000-0003-0119-3417
Guixiao La 
Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences; Henan Provincial Center for Engineering and Technology Research of Traditional Chinese Medicine, Zhengzhou, Henan 450046, P.R. China https://orcid.org/0009-0001-7542-4532



License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.