Improving antifungal effect of peppermint essential oil

Masoumeh Vakili-Ghartavol

Ferdowsi University of Mashhad, Faculty of Agriculture, Horticultural Science Department, Mashhad, Iran
https://orcid.org/0000-0003-2834-3438

Hossein Arouiee

Ferdowsi University of Mashhad, Faculty of Agriculture, Horticultural Science Department, Mashhad, Iran
https://orcid.org/0000-0002-5493-8200

Shiva Golmohammadzadeh

Mashhad University of Medical Sciences, Pharmaceutical Technology Institute, Nanotechnology Research Center, Mashhad, Iran; Mashhad University of Medical Sciences, Department of Pharmaceutics, School of Pharmacy, Mashhad, Iran
https://orcid.org/0000-0002-5370-6643

Mahboobeh Naseri

University Of Torbat Heydarieh, Faculty of Agriculture, Department of Plant Production, Torbat Heydarieh, Iran
https://orcid.org/0000-0002-3180-5341


Abstract

Nanoencapsulation of essential oils is a promising strategy for extending their antifungal activity and addressing evaporation and decomposition in unfavorable environmental conditions. This research aimed to synthesize and compare the physical properties of solid lipid nanoparticles (SLNs) containing peppermint essential oil (PE) during 12 months of storage at various temperatures (4°C, 25°C, 27°C with 60% relative humidity, 37°C, and 40°C with 75% relative humidity), and to investigate their antifungal activity compared to free PE. The SLN formulations were prepared using high-shear homogenization and ultrasound techniques and were analyzed using a particle size analyzer, differential scanning calorimetry, transmission electron microscopy, and microscopic images of fungal mycelium to assess encapsulation efficacy. The results showed that the PE-SLNs had a size of 164.2 ±5.8 nm, a PDI value of 0.176 ±0.01, a zeta potential value of –11.3 mV, and an encapsulation percentage of approximately 75 ±0.5%. Overall, the physical properties of the formulations showed a slight and acceptable increase over the 12-month storage period at all investigated temperatures. Furthermore, the in vitro inhibition percentage of free PE at a concentration of 2000 μL L–1 against Penicillium italicum and P. digitatum was 66.7% ±2.6 and 66.8% ±0.8, respectively, while for PE-SLNs it was 88.8% ±0.9 and 89.9% ±1.4. These results demonstrate the potential of SLNs as an effective carrier for sustained delivery of PE with improved antifungal activity during storage.

Keywords:

encapsulation percentage, inhibition percentage, Penicillium, physical properties, solid lipid nanoparticles, synthesis

Aburahma, M.H., Badr-Eldin, S.M. (2014). Compritol 888 ATO: a multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Exp. Op. Drug Del., 11(12), 1865–1883. https://doi.org/10.1517/17425247.2014.935335. DOI: https://doi.org/10.1517/17425247.2014.935335

Adams, R.P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing, Carol Stream, IL.

U.S. Food and Drug Administration. (2021). Polysorbathe 80. Available: https://www.govinfo.gov/content/pkg/CFR-2021-title21-vol3/pdf/CFR-2021-title21-vol3-sec172-840.pdf

Antonioli, G., Fontanella, G., Echeverrigaray, S., Delamare, A.P.L., Pauletti, G.F., Barcellos, T. (2020). Poly (lactic acid) nanocapsules containing lemongrass essential oil for postharvest decay control: in vitro and in vivo evaluation against phytopathogenic fungi. Food Chem., 326, 126997. https://doi.org/10.1016/j.foodchem.2020.126997 DOI: https://doi.org/10.1016/j.foodchem.2020.126997

Aslan, M., Ertaş, N., Demi̇r, M.K. (2023). Storage stability, heat stability, controlled release and antifungal activity of liposomes as alternative fungal preservation agents. Food Biosci., 51, 102281. https://doi.org/10.1016/j.fbio.2022.102281 DOI: https://doi.org/10.1016/j.fbio.2022.102281

Bagul, U,S., Pisal, V.V., Solanki, N.V., Karnavat, A. (2018). Current status of solid lipid nanoparticles: a review. Mod. Appl. Bioequiv. Bioavailab., 3(4), 1–2.

Bahari, L.A.S, Hamishehkar, H. (2016). The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; a comparative literature review. Adv. Pharm. Bull., 6(2), 143. https://doi.org/10.15171/apb.2016.021 DOI: https://doi.org/10.15171/apb.2016.021

Baibakova, E.V., Nefedjeva, E.E., Suska-Malawska, M., Wilk, M., Sevriukova, G.A., Zheltobriukhov, V.F. (2019). Modern fungicides: mechanisms of action, fungal resistance and phytotoxic effects. Annm Res. Rev. Biol., 1–16. https://doi.org/10.9734/arrb/2019/v32i330083 DOI: https://doi.org/10.9734/arrb/2019/v32i330083

Barros Gomes, P.R. et al. (2019). Chemical study and antifungal activity of the essential oil of the branches of Aniba duckei Kostermans. J. Essent. Bear. Plants, 22(6), 1554–1561. https://doi.org/10.1080/0972060X.2019.1700829 DOI: https://doi.org/10.1080/0972060X.2019.1700829

Bashiri, S., Ghanbarzadeh, B., Ayaseh, A., Dehghannya, J., Ehsani, A., Ozyurt, H. (2020). Essential oil-loaded nanostructured lipid carriers: the effects of liquid lipid type on the physicochemical properties in beverage models. Food Biosci., 35, 100526. https://doi.org/10.1016/j.fbio.2020.100526 DOI: https://doi.org/10.1016/j.fbio.2020.100526

Campos, E.V.R. et al. (2015). Polymeric and solid lipid nanoparticles for sustained release of carbendazim and tebuconazole in agricultural applications. Sci. Rep., 5(1), 1–14. https://doi.org/10.1038/srep13809 DOI: https://doi.org/10.1038/srep13809

Chawla, V., Saraf, S.A. (2011). Glyceryl behenate and its suitability for production of aceclofenac solid lipid nanoparticles. J. Am. Oil Chem. Soc., 88(1), 119–126. https://doi.org/10.1007/s11746-010-1618-6 DOI: https://doi.org/10.1007/s11746-010-1618-6

Danaei, M. et al. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10(2), 57. https://doi.org/10.3390/pharmaceutics10020057 DOI: https://doi.org/10.3390/pharmaceutics10020057

Dzulhi, S., Anwar, E., Nurhayati, T. (2018). Formulation, characterization and in vitro skin penetration of green tea (Camellia sinensis L.) leaves extract-loaded solid lipid nanoparticles. J. Appl. Pharm. Sci., 8(8), 57¬62. https://doi.org/10.7324/JAPS.2018.8809 DOI: https://doi.org/10.7324/JAPS.2018.8809

Fazly Bazzaz, B., Khameneh, B., Namazi, N., Iranshahi, M., Davoodi, D., Golmohammadzadeh, S. (2018). Solid lipid nanoparticles carrying Eugenia caryophyllata essential oil: the novel nanoparticulate systems with broad‐spectrum antimicrobial activity. Lett. Appl. Microbiol., 66(6), 506–513. https://doi.org/10.1111/lam.12886 DOI: https://doi.org/10.1111/lam.12886

Fouad, E.A., Yassin, A.E.B., Alajami, H.N. (2015). Characterization of celecoxib-loaded solid lipid nanoparticles formulated with tristearin and softisan 100. Trop. J. Pharm. Res., 14(2), 205–210. https://doi.org/10.4314/tjpr.v14i2.3 DOI: https://doi.org/10.4314/tjpr.v14i2.3

Freitas, C., Müller, R.H. (1998). Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. Int. J. Pharm., 168(2), 221–229. https://doi.org/10.1016/S0378-5173(98)00092-1 DOI: https://doi.org/10.1016/S0378-5173(98)00092-1

Ghodrati, M., Farahpour, M.R., Hamishehkar, H. (2019). Encapsulation of peppermint essential oil in nanostructured lipid carriers: in vitro antibacterial activity and accelerative effect on infected wound healing. Colloids Surf. A Physicochem. Eng. Aspects, 564, 161–169. https://doi.org/10.1016/j.colsurfa.2018.12.043 DOI: https://doi.org/10.1016/j.colsurfa.2018.12.043

Gundewadi, G., Sarkar, D.J., Rudra, S.G., Singh, D. (2018). Preparation of basil oil nanoemulsion using Sapindus mukorossi pericarp extract: physico-chemical properties and antifungal activity against food spoilage pathogens. Ind. Crops Prod., 125, 95–104. https://doi.org/10.1016/j.indcrop.2018.08.076 DOI: https://doi.org/10.1016/j.indcrop.2018.08.076

Jin, X., Streett, D.A., Dunlap, C.A., Lyn, M.E. (2008). Application of hydrophilic–lipophilic balance (HLB) number to optimize a compatible non-ionic surfactant for dried aerial conidia of Beauveria bassiana. Biol. Control, 46(2), 226–233. https://doi.org/10.1016/j.biocontrol.2008.03.008 DOI: https://doi.org/10.1016/j.biocontrol.2008.03.008

Keck, C.M., Kovačević, A., Müller, R.H., Savić, S., Vuleta, G., Milić, J. (2014). Formulation of solid lipid nanoparticles (SLN): the value of different alkyl polyglucoside surfactants. Int. J. Pharm., 474(1–2), 33–41. https://doi.org/10.1016/j.ijpharm.2014.08.008 DOI: https://doi.org/10.1016/j.ijpharm.2014.08.008

Kelidari, H.R., Moemenbellah-Fard, M.D., Morteza-Semnani, K., Amoozegar, F., Shahriari-Namadi, M., Saeedi, M., Osanloo, M. (2021). Solid-lipid nanoparticles (SLNs) containing Zataria multiflora essential oil with no-cytotoxicity and potent repellent activity against Anopheles stephensi. J. Parasit. Dis., 45(1), 101–108. https://doi.org/10.1007/s12639-020-01281-x DOI: https://doi.org/10.1007/s12639-020-01281-x

Khameneh, B., Halimi, V., Jaafari, M.R., Golmohammadzadeh, S. (2015). Safranal-loaded solid lipid nanoparticles: evaluation of sunscreen and moisturizing potential for topical applications. Iran. J. Basic Med. Sci., 18(1), 58.

Khorram, F., Ramezanian, A. (2021). Cinnamon essential oil incorporated in shellac, a novel bio-product to maintain quality of ‘Thomson navel’orange fruit. J. Food Sci. Technol., 58, 2963–2972. https://doi.org/10.1007/s13197-020-04798-4 DOI: https://doi.org/10.1007/s13197-020-04798-4

Kolluru, L.P., Atre, P., Rizvi, S.A. (2021). Characterization and applications of colloidal systems as versatile drug delivery carriers for parenteral formulations. Pharmaceuticals, 14(2), 108. https://doi.org/10.3390/ph14020108 DOI: https://doi.org/10.3390/ph14020108

Lai, F., Sinico, C., De Logu, A., Zaru, M., Müller, R.H., Fadda, A.M. (2007). SLN as a topical delivery system for Artemisia arborescens essential oil: in vitro antiviral activity and skin permeation study. Int. J. Nanomed., 2(3), 419-425. https://doi.org/10.2147/IJN.S2.3.419

Lehotay, S.J., Mastovska, K., Amirav, A., Fialkov, A.B., Martos, P.A., De Kok, A., Fernández-Alba, A.R. (2008). Identification and confirmation of chemical residues in food by chromatography-mass spectrometry and other techniques. TrAC Trends Anal. Chem., 27(11), 1070–1090. https://doi.org/10.1016/j.trac.2008.10.004 DOI: https://doi.org/10.1016/j.trac.2008.10.004

Li, Y., Kong, D., Fu, Y., Sussman, M.R., Wu, H. (2020). The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem., 148, 80–89. https://doi.org/10.1016/j.plaphy.2020.01.006 DOI: https://doi.org/10.1016/j.plaphy.2020.01.006

Lingayat, V.J., Zarekar, N.S., Shendge, R.S. (2017). Solid lipid nanoparticles: a review. Nanosci. Nanotechnol. Res., 4(2), 67–72. https://doi.org/10.12691/nnr-4-2-5

Liu, J., Hu, W., Chen, H., Ni, Q., Xu, H., Yang, X. (2007). Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int. J. Pharm., 328(2), 191–195. https://doi.org/10.1016/j.ijpharm.2006.08.007 DOI: https://doi.org/10.1016/j.ijpharm.2006.08.007

Lu, Y. et al. (2014). Food emulsifier polysorbate 80 increases intestinal absorption of di-(2-ethylhexyl) phthalate in rats. Toxicol. Sci., 139(2), 317–327. https://doi.org/10.1093/toxsci/kfu055 DOI: https://doi.org/10.1093/toxsci/kfu055

Mahboubi, M., Kazempour, N. (2014). Chemical composition and antimicrobial activity of peppermint (Mentha piperita L.) essential oil. Songklanakarin J. Sci. Technol., 36(1), 83–87.

Mahendran, G., Rahman, L.U. (2020). Ethnomedicinal, phytochemical and pharmacological updates on peppermint (Mentha× piperita L.) – a review. Phytother. Res. 34(9), 2088–2139. https://doi.org/10.1002/ptr.6664 DOI: https://doi.org/10.1002/ptr.6664

McClements, D.J., Rao, J. (2011). Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr., 51(4), 285–330. https://doi.org/10.1080/10408398.2011.559558 DOI: https://doi.org/10.1080/10408398.2011.559558

McDaniel, A., Tonyali, B., Yucel, U., Trinetta, V. (2019). Formulation and development of lipid nanoparticle antifungal packaging films to control postharvest disease. J. Agric. Food Res., 1, 100013. https://doi.org/10.1016/j.jafr.2019.100013 DOI: https://doi.org/10.1016/j.jafr.2019.100013

Milsmann, J., Oehlke, K., Schrader, K., Greiner, R., Steffen-Heins, A. (2018). Fate of edible solid lipid nanoparticles (SLN) in surfactant stabilized o/w emulsions. Part 1: Interplay of SLN and oil droplets. Colloids Surf. A Physicochem. Eng. Aspects, 558, 615–622. https://doi.org/10.1016/j.colsurfa.2017.05.073 DOI: https://doi.org/10.1016/j.colsurfa.2017.05.073

Mirtalebi, M., Rajaei, A., Bahmaei, M., Yari Khosroushahi, A. (2020). Storage stability of wheat germ oil encapsulated within nanostructured lipid carriers. J. Nanostruct., 10(2), 268–278. 10.22052/JNS.2020.02.007

Montenegro, L., Pasquinucci, L., Zappalà, A., Chiechio, S., Turnaturi, R., Parenti, C. (2017). Rosemary essential oil-loaded lipid nanoparticles: In vivo topical activity from gel vehicles. Pharmaceutics, 9(4), 48. https://doi.org/10.3390/pharmaceutics9040048 DOI: https://doi.org/10.3390/pharmaceutics9040048

Nahr, F.K., Ghanbarzadeh, B., Hamishehkar, H., Kafil, H.S. (2018). Food grade nanostructured lipid carrier for cardamom essential oil: preparation, characterization and antimicrobial activity. J. Funct. Foods, 40, 1–8. https://doi.org/10.1016/j.jff.2017.09.028 DOI: https://doi.org/10.1016/j.jff.2017.09.028

Naseri, M., Golmohamadzadeh, S., Arouiee, H., Jaafari, M.R., Nemati, S.H. (2020). Preparation and comparison of various formulations of solid lipid nanoparticles (SLNs) containing essential oil of Zataria multiflora. J. Hortic. Postharvest Res., 3(1), 73–84. https://doi.org/10.22077/jhpr.2019.2570.1068

Nasseri, M., Golmohammadzadeh, S., Arouiee, H., Jaafari, M.R., Neamati, H. (2016). Antifungal activity of Zataria multiflora essential oil-loaded solid lipid nanoparticles in vitro condition. Iran. J. Basic Med. Sci., 19(11), 1231.

Nielsen, C.K., Kjems, J., Mygind, T., Snabe, T., Meyer, R.L. (2016). Effects of Tween 80 on growth and biofilm formation in laboratory media. Front. Microbiol., 7, 1878. DOI: https://doi.org/10.3389/fmicb.2016.01878

Ons, L., Bylemans, D., Thevissen, K., Cammue, B.P. (2020). Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms, 8(12), 1930. https://doi.org/10.3390/microorganisms8121930 DOI: https://doi.org/10.3390/microorganisms8121930

Palfi, M., Konjevoda, P., Vrandečić, K. (2019). Antifungal activity of essential oils on mycelial growth of Fusarium oxysporum and Bortytis cinerea. Emirates J. Food Agric., 31(7), 544–554. 10.9755/ejfa.2019.v31.i7.1972 DOI: https://doi.org/10.9755/ejfa.2019.v31.i7.1972

Papoutsis, K., Mathioudakis, M.M., Hasperué, J.H., Ziogas, V. (2019). Non-chemical treatments for preventing the postharvest fungal rotting of citrus caused by Penicillium digitatum (green mold) and Penicillium italicum (blue mold). Trends Food Sci. Technol., 86, 479–491. https://doi.org/10.1016/j.tifs.2019.02.053 DOI: https://doi.org/10.1016/j.tifs.2019.02.053

Pereira, I., Zielińska, A., Ferreira, N.R., Silva, A.M., Souto, E.B. (2018). Optimization of linalool-loaded solid lipid nanoparticles using experimental factorial design and long-term stability studies with a new centrifugal sedimentation method. Int. J. Pharm. 549(1–2), 261–270. https://doi.org/10.1016/j.ijpharm.2018.07.068 DOI: https://doi.org/10.1016/j.ijpharm.2018.07.068

Piran, P., Kafil, H.S., Ghanbarzadeh, S., Safdari, R., Hamishehkar, H. (2017). Formulation of menthol-loaded nanostructured lipid carriers to enhance its antimicrobial activity for food preservation. Adv. Pharm. Bull., 7(2), 261. https://doi.org/10.15171/apb.2017.031 DOI: https://doi.org/10.15171/apb.2017.031

Plavšić, D.V., Dimić, G.R., Psodorov, Đ.B., Psodorov, D.Đ., Šarić, L.Ć., Čabarkapa, I.S., Košutić, M.B. (2017). Antifungal activity of mentha piperita and carum carvi essential oils. Zb. Matice Srp. Prir. Nauke, (133), 201–207. https://doi.org/10.2298/ZMSPN1733201P DOI: https://doi.org/10.2298/ZMSPN1733201P

Pongsumpun, P., Iwamoto, S., Siripatrawan, U. (2020). Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrasonics Snochem., 60, 104604. https://doi.org/10.1016/j.ultsonch.2019.05.021 DOI: https://doi.org/10.1016/j.ultsonch.2019.05.021

Radomska-Soukharev, A. (2007). Stability of lipid excipients in solid lipid nanoparticles. Adv. Drug Del. Rev., 59(6), 411–418. https://doi.org/10.1016/j.addr.2007.04.004 DOI: https://doi.org/10.1016/j.addr.2007.04.004

Rolim, H.M.L., Ramalho, T.C. (2020). Essential oil encapsulated in nanoparticles for treatment of skin infections. In: Nanotechnology in skin, soft tissue, and bone infections, M. Rai (ed.). Springer, 121–131. https://doi.org/10.1007/978-3-030-35147-2_7 DOI: https://doi.org/10.1007/978-3-030-35147-2_7

Salminen, H., Helgason, T., Kristinsson, B., Kristbergsson, K., Weiss, J. (2016). Formation of nanostructured colloidosomes using electrostatic deposition of solid lipid nanoparticles onto an oil droplet interface. Food Res. Int., 79, 11–18. https://doi.org/10.1016/j.foodres.2015.11.031 DOI: https://doi.org/10.1016/j.foodres.2015.11.031

Sarhadi, S., Gholizadeh, M., Moghadasian, T., Golmohammadzadeh, S. (2020). Moisturizing effects of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) using deionized and magnetized water by in vivo and in vitro methods. Iran. J. Basic Med. Sci., 23(3), 337. https://doi.org/10.22038/IJBMS.2020.39587.9397

Senosy, I.A., Guo, H.-M., Ouyang, M.-N., Lu, Z.-H., Yang, Z.-H., Li, J.-H. (2020). Magnetic solid-phase extraction based on nano-zeolite imidazolate framework-8-functionalized magnetic graphene oxide for the quantification of residual fungicides in water, honey and fruit juices. Food Chem., 325, 126944. https://doi.org/10.1016/j.foodchem.2020.12694 DOI: https://doi.org/10.1016/j.foodchem.2020.126944

Shah, R., Eldridge, D., Palombo, E., Harding, I. (2014). Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential. J. Phys. Sci., 25(1).

Shahbazi, Y. (2019). Antioxidant, antibacterial, and antifungal properties of nanoemulsion of clove essential oil. Nanomed. Res. J., 4(4), 204–208. https://doi.org/10.22034/NMRJ.2019.04.001

Shetta, A., Kegere, J, Mamdouh, W. (2019). Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. Int. J. Biol. Macromol., 126, 731–742. https://doi.org/10.1016/j.ijbiomac.2018.12.161 DOI: https://doi.org/10.1016/j.ijbiomac.2018.12.161

Souto, E.B. (2020). Croton argyrophyllus Kunth essential oil-loaded solid lipid nanoparticles: evaluation of release profile, antioxidant activity and cytotoxicity in a neuroblastoma cell line. Sustainability, 12(18), 7697. https://doi.org/10.3390/su12187697 DOI: https://doi.org/10.3390/su12187697

Talarico, L., Consumi, M., Leone, G., Tamasi, G., Magnani, A. (2021). Solid lipid nanoparticles produced via a coacervation method as promising carriers for controlled release of quercetin. Molecules, 26(9), 2694. https://doi.org/10.3390/molecules26092694 DOI: https://doi.org/10.3390/molecules26092694

Tang, X., Huston, K.J., Larson, R.G. (2014). Molecular dynamics simulations of structure–property relationships of Tween 80 surfactants in water and at interfaces. J. Phys. Chem. B, 118(45), 12907–12918. https://doi.org/10.1021/jp507499k DOI: https://doi.org/10.1021/jp507499k

Tariq, S. et al. (2019). A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microbial Pathogen., 134, 103580. https://doi.org/10.1016/j.micpath.2019.103580 DOI: https://doi.org/10.1016/j.micpath.2019.103580

Tavassolirajaee, M., Tatari, M., Kazemi, M.S., Taghizadeh, S.F. (2022). In vitro cytotoxicity of Cuminum cyminum essential oil loaded SLN nanoparticle. Nanomed. J., 9(3), 252–260. https://doi.org/10.22038/NMJ.2022.63943.1668

Torrisi, C., Di Guardia, M., Castelli, F., Sarpietro, M.G. (2021). Naringenin release to biomembrane models by incorporation into nanoparticles. Experimental evidence using differential scanning calorimetry. Surfaces, 4(4), 295–305. https://doi.org/10.3390/surfaces4040025 DOI: https://doi.org/10.3390/surfaces4040025

Vakili-Ghartavol, M., Arouiee, H., Golmohammadzadeh, S., Naseri, M. (2022). Antifungal activity of Mentha× piperita L. essential oil. Acta Sci. Pol. Hortorum Cultus, 21(1), 143–152. https://doi.org/10.24326/asphc.2022.1.12 DOI: https://doi.org/10.24326/asphc.2022.1.12

Vakili-Ghartavol M., Arouiee H., Golmohammadzadeh S., Naseri M., Bandian L. (2024). Edible coatings based on solid lipid nanoparticles containing essential oil to improve antimicrobial activity, shelf-life, and quality of strawberries. J. Stored Prod. Res., 106, 102262. https://doi.org/10.1016/j.jspr.2024.102262 DOI: https://doi.org/10.1016/j.jspr.2024.102262

Vijayakumar, A., Baskaran, R., Jang, Y.S., Oh, S.H., Yoo, B.K. (2017). Quercetin-loaded solid lipid nanoparticle dispersion with improved physicochemical properties and cellular uptake. AAPS PharmSciTech, 18, 875–883. https://doi.org/10.1208/s12249-016-0573-4 DOI: https://doi.org/10.1208/s12249-016-0573-4

Wu, L., Zhang, J., Watanabe, W. (2011). Physical and chemical stability of drug nanoparticles. Adv. Drug Del. Rev. 63(6), 456–469. https://doi.org/10.1016/j.addr.2011.02.001 DOI: https://doi.org/10.1016/j.addr.2011.02.001

Wu, S., Wang, Y., Liu, N., Dong, G., Sheng, C. (2017). Tackling fungal resistance by biofilm inhibitors. J. Med. Chem., 60(6), 2193–2211. https://doi.org/10.1021/acs.jmedchem.6b01203 DOI: https://doi.org/10.1021/acs.jmedchem.6b01203

Yadegarinia, D., Gachkar, L., Rezaei, M.B., Taghizadeh, M., Astaneh, S.A., Rasooli, I. (2006). Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L. essential oils. Phytochemistry, 67(12), 1249–1255. https://doi.org/10.1016/j.phytochem.2006.04.025 DOI: https://doi.org/10.1016/j.phytochem.2006.04.025

Yu, Y., Chen, D., Lee, Y.Y., Chen, N., Wang, Y., Qiu, C. (2023). Physicochemical and in vitro digestion properties of curcumin-loaded solid lipid nanoparticles with different solid lipids and emulsifiers. Foods, 12(10), 2045. https://doi.org/10.3390/foods12102045 DOI: https://doi.org/10.3390/foods12102045

Yu, Z., Fan, W., Wang, L., Qi, J., Lu, Y., Wu, W. (2019). Effect of surface charges on oral absorption of intact solid lipid nanoparticles. Mol. Pharm., 16(12), 5013–5024. https://doi.org/10.1021/acs.molpharmaceut.9b00861 DOI: https://doi.org/10.1021/acs.molpharmaceut.9b00861

Zhao, Y., Chang, Y.-X., Hu, X., Liu, C.-Y., Quan, L.-H., Liao, Y.-H. (2017). Solid lipid nanoparticles for sustained pulmonary delivery of Yuxingcao essential oil: preparation, characterization and in vivo evaluation. Int. J. Pharm., 516(1–2), 364–371. https://doi.org/10.1016/j.ijpharm.2016.11.046 DOI: https://doi.org/10.1016/j.ijpharm.2016.11.046

Download

Published
2024-04-30



Masoumeh Vakili-Ghartavol 
Ferdowsi University of Mashhad, Faculty of Agriculture, Horticultural Science Department, Mashhad, Iran https://orcid.org/0000-0003-2834-3438
Hossein Arouiee 
Ferdowsi University of Mashhad, Faculty of Agriculture, Horticultural Science Department, Mashhad, Iran https://orcid.org/0000-0002-5493-8200
Shiva Golmohammadzadeh 
Mashhad University of Medical Sciences, Pharmaceutical Technology Institute, Nanotechnology Research Center, Mashhad, Iran; Mashhad University of Medical Sciences, Department of Pharmaceutics, School of Pharmacy, Mashhad, Iran https://orcid.org/0000-0002-5370-6643
Mahboobeh Naseri 
University Of Torbat Heydarieh, Faculty of Agriculture, Department of Plant Production, Torbat Heydarieh, Iran https://orcid.org/0000-0002-3180-5341



License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)