In vitro studies of the antagonistic effect of selected fungi on Bipolaris sorokiniana (Sacc.) Shoem.

Barbara Wiewióra

The Plant Breeding and Acclimatization Institute, Radzików, Poland
https://orcid.org/0000-0003-3969-6968

Grzegorz Żurek

Plant Breeding and Acclimatization Institute – National Research Institute, Radzików, Poland
https://orcid.org/0000-0003-2359-2232

Katarzyna Gleń-Karolczyk

Department of Microbiology and Biomonitoring, University of Agriculture in Kraków, Al. Mickiewicza 21, 31-120 Kraków, Poland
https://orcid.org/0000-0002-0288-559X


Abstract

Natural protection of plants against diseases, pests and environmental stresses is the only acceptable alternative to the progressive application of chemicals in plant production. Amidst evolving climatic patterns, various diseases pose significant threats to crop plant production. Among these concerns, a prominent menace across multiple regions of the world is seedling blight, incited by the pathogenic agent Bipolaris sorokiniana Sacc. The antagonistic effect may occur in/on the host itself or in its vicinity in the case of saprotrophic organisms. B. sorokiniana attacks many species of crop plants, especially in warmer growing areas and causes significant losses of field emergence and yield. This study aimed to assess the inhibitory impact of selected microscopic fungi on the growth and development of B. sorokiniana through dual-culture experiments. The study also aimed to identify potential fungal candidates for the biocontrol of seedling blight caused by this pathogen. The outcomes demonstrated that only several of the fungi subjected to testing had a noteworthy influence on the growth of B. sorokiniana. The presence of a few fungi species, such as Trichoderma viride, Fusarium graminearum, and Botrytis cinerea led to a decrease in B. sorokiniana growth by a minimum of 50%. In the instance of other fungi such as Sordaria fimicola, Epicoccum nigrum, Fusarium sporotrichioides, F. culmorum, and Nigrospora oryzae, the reduction amounted to at least 40%. The vast majority (75%) of the fungal species used in the test limited the growth of Bipolaris colonies by up to 39%.

Keywords:

antagonistic effect of fungi, Bipolaris sorokiniana, biological control

Abbas, A., Jiang, D., Fu, Y. (2017). Trichoderma spp. as antagonist of Rhizoctonia solani. J. Plant Pathol. Microbi-ol., 8, 402. https://doi.org/10.4172/2157-7471.1000402

Alizadeh, M., Vasebi, Y., Safaie, N. (2020). Microbial antagonists against plant pathogens in Iran: a review. Open Agric., 5, 404–440.

Alippi, A.M., Perelló, A.E., Sisterna, M.N., Greco, N.M., Cordo, C.A. (2000). Potential of Spore-forming bacteria as biocontrol agents of wheat foliar diseases under laboratory and greenhouse conditions. J. Plant Dis. Prot., 107(2), 155–169.

Al-Sadi, A.M. (2021). Bipolaris sorokiniana – induced black point, common root rot, and spot blotch diseases of wheat: a Review. Front. Cell. Infect. Microbiol., 11, 584899. https://doi.org/10.3389/fcimb.2021.584899

Baker, K.F. (1987). Evolving concepts of biological control of plant pathogens. Annu. Rev. Phytopathol., 25(1), 67–85. https://doi.org/10.1146/annurev.py.25.090187.000435

Barba, J.T., Reis, E.M., Forcelini, C.A. (2002). Comparison of methods for the detection of Bipolaris sorokiniana in barley seeds. Fitopatol. Bras., 27(4), 389–394.

Calvo, J., Calvente, V., de Orellano,M.E., Benuzzi, D., de Tosetti, M.I.S. (2003). Improvement in the biocontrol of postharvest diseases of apples with the use of yeast mixtures. Biocontrol, 48(5), 579–593. https://doi.org/10.1023/A:1025738811204

Chidambaram, S.B., Matur, S.B., Neergaard, P. (1972). Handbook on seed health testing. The Internat. Seed Test-ing Association As-NLH, Norway, 1–207.

Christensen, J.J. (1922). Studies on the parasitism of Helminthosporium sativum. Univ. Minn. Agric. Exp. Stn. Tech. Bull., 11, 1–42.

Christensen, J.J. (1963). Longevity of fungi in barley kernels. Pl. Dis. Reprt., 47, 639–642.

Clark, R.V., Wallen, V.R. (1969). Seed infection of barley by Cochliobolus sativus and its influence on yield. Can. Plant Dis. Surv., 49, 60–64.

Couture, L., Sutton, J.C. (1978) Relation of weather variables and host factors to incidence of airborne spores of Bipolaris sorokiniana. Can. J. Bot., 56, 2162–2170.

Darshan, K., Agrawal, R., Bashal, M.B., Mohan, M.H. (2020). Deciphering the network of interconnected pathways of Chaetomium globosum antagonistic related genes against Bipolaris sorokiniana using RNA seq approach. J. Biol. Control, 34(4), 258–269. https://doi.org/10.18311/jbc/2020/26736

Dutbayev, Y., Kharipzhanova, A., Sultanova, N., Dababat, A.A., Bekezhanova, M., Uspanov, A. (2022). The ability of Bipolaris sorokiniana isolated from spring barley leaves to survive in plant residuals of different crops. OnLine J. Biol. Sci., 22(3), 279–286. https://doi.org/10.3844/ojbsci.2022.279.286

Freeman, S., Minz, D., Kolesnik, I., Barbul, O., Zveibil, A., Maymon, M., et al. (2004). Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. Eur. J. Plant Pathol., 110(4), 361–370. https://doi.org/10.1023/B:EJPP.0000021057.93305.d9

Ghazvini, H., Tekauz, A. (2012). Molecular diversity in the barley pathogen Bipolaris sorokiniana (Cochliobolus sativus). Australas. Plant Pathol., 41, 283–293.

Guetsky, R., Shtienberg, D., Elad, Y., Dinoor, A. (2001). Combining biocontrol agents to reduce the variability of biological control. Phytopathology, 91, 621–627. https://doi.org/10.1094/PHYTO.2001.91.7.621

Haggag, W.M., Nofal, M.A. (2006). Improving the biological control of Botryodiplodia disease on some Annona cultivars using single or multibioagents in Egypt. Biol. Control, 38(3), 341–349. https://doi.org/10.1016/j.biocontrol.2006.02.010

Heydari, A., Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antago-nists. J. Biol. Sci., 10(4), 273–290. https://doi.org/10.3923/jbs.2010.273.290

Howell, C.R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis., 87(1), 4–10. https://doi.org/10.1094/PDIS.2003.87.1.4

Iftikhar, S., Shahzad, A., Munir, A., Sultan, A., Iftikhar, A. (2009). Hosts of Bipolaris sorokiniana, the major path-ogen of spot blotch of wheat in Pakistan. Pak. J. Bot., 41, 1433–1436.

Infante, D., Martínez, B., Gonzalez, N., Reyes, Y. (2009). Mecanismos de acción de Trichoderma frente a hongos fitopatógenos. Rev. Protección Veg., 24, 14–21.

Knudsen, I.M.B., Hockenhull, J., Jensen, D.F. (1995). Biocontrol of seedling diseases of barley and wheat caused by Fusarium culmorum and Bipolaris sorokiniana: effects of selected fungal antagonists on growth and yield components. Plant Pathol., 44(3), 467–477.

Kumar, J., Hückelhoven, R., Beckhove, U., Nagarajan, S., Kogel, K.H. (2001). A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) and its toxins. Am. Phytopathol. Soc., 91(2), 127–133. https://doi.org/10.1094/PHYTO.2001.91.2.127

Kumar, J., Schafer, P., Hückelhoven, R., Langen, G., Baltruschat, H., Stein, E., Nagarajan, S., Kogel, K.H. (2002). Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards bet-ter control double dagger. Mol. Plant Pathol., 3(4), 185–195.

Kwaśna, H., Chełkowski, J., Zajkowski, P. (1991). Flora Polska. T. 22. Grzyby niedoskonałe. Strzępczakowe. Gru-zełkowate. Sierpik (Fusarium). PAN, Warszawa-Kraków, 1–158.

Malaker P.K., Mian, I.H., Maniruzzaman Khandaker, M.D., Reza, M.M.A. (2007). Survival of Bipolaris sorokin-iana (Sacc.) Shoemaker in soil and residue of wheat. Bangladesh J. Bot., 36(2), 133–137.

Liu, B., Stevens-Green, R., Johal, D., Buchanan, R., Geddes-McAlister, J. (2022). Fungal pathogens of cereal crops: Proteomic insights into fungal pathogenesis, host defense, and resistance. J. Plant Physiol., 269, 153593. https://doi.org/10.1016/j.jplph.2021.153593

Luan, P., Yi, Y., Huang, Y., Cui, L., Hou, Z., Zhu, L., Ren, X., Jia, S., Liu, Y. (2023). Biocontrol potential and action mechanism of Bacillus amyloliquefaciens DB2 on Bipolaris sorokiniana. Front. Microbiol. 14, 1149363. https://doi.org/10.3389/fmicb.2023.1149363

Malone, J.P., Muskett, A.E. (1997). Seed-borne fungi. Description of 77 fungus species, Sheppard J.W. (ed.). ISTA, Zurich, 1–191.

Modrzewska, M., Błaszczyk, L., Stępień, Ł. Urbaniak, M., Waśkiewicz, A., Yoshinari, T., Bryła, M. (2022). Tricho-derma versus Fusarium – inhibition of pathogen growth and mycotoxin biosynthesis. Molecules, 27, 8146. http://doi.org/10.3390/molecules27238146

Ordentlich, A., Nachmias, A., Chet, I. (1990). Integrated control of Verticillium dahlia in potato by Trichoderma harzianum and captan. Crop Prot., 9 (5), 363–366. http://doi.org/10.1016/0261-2194(90)90008-U

Rao, A.P., Agbo, B.E., Ikpoh, I.S., Udoekong, N.S., Etuk, H.A. (2016). Biological control mechanisms against plant-based pathogens. J. Biopesticides and Environment, 3, 1–11.

Salehpour, M., Etebarian, H.R., Roustaei, A., Khodakaramian, G., Aminian, H. (2005). Biological control of com-mon root rot of wheat ( Bipolaris sorokiniana ) by Trichoderma isolates. Plant Pathol. J., 4(1), 85–90.

Sarkar, D., Rovenich, H., Jeena, G., Nizam, S., Tissier, A., Balcke, G.U., Mahdi, L.K., Bonkowski, M., Langen, G., Zuccaro, A. (2019). The inconspicuous gatekeeper: endophytic Serendipita vermifera acts as extended plant protection barrier in the rhizosphere. New Phytol., 224, 886–901. http://doi.org/10.1111/nph.15904

Singh, D., Pande, S.K., Kavita, Kumar Yadav, J., Kumar, S. (2018). Bioefficacy of Trichoderma spp. against Bipo-laris sorokiniana causing spot blotch disease of wheat and barley. Int. J. Curr. Microbiol. App. Sci., 7(3), 2322–2327. https://doi.org/10.20546/ijcmas.2018.703.272

Singh, U.B., Malviya, D., Singh, S., Kumar, M., Sahu, P.K., Singh, H.V., Kumar, S., Roy, M., Imran, M., Rai, J.P., Sharma, A.K., Saxena, A.K. (2019). Trichoderma harzianum- and methyl jasmonate-induced resistance to Bi-polaris sorokiniana through enhanced phenylpropanoid activities in bread wheat (Triticum aestivum L.). Front. Microbiol., 10, 1697. http://doi.org/10.3389/fmicb.2019.01697

Sundar, A.R., Das, N.M., Krishnaveni, D. (1995). In-vitro antagonism of Trichoderma spp. against two fungal path-ogens of castor. Indian J. Plant Prot., 23, 152–155.

Thambugala, K.M., Daranagama, D.A., Phillips, A.J.L., Kannangara, S.D., Promputtha, I. (2020). Fungi vs. fungi in biocontrol: an overview of fungal antagonists applied against fungal plant pathogens. Front. Cell. Infect. Micro-biol., 10, 604923. http://doi.org/10.3389/fcimb.2020.604923

Tucci, M., Ruocco, M., De Masi, L., De Palma, M., Lorito, M. (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol. Plant Pathol., 12, 341–354.

Tyśkiewicz, R., Nowak, A., Ozimek, E., Jaroszuk-Sciseł, J. (2022). Trichoderma: the current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. Int. J. Mol. Sci., 23, 2329. http://doi.org/10.3390/ijms23042329

Vaish, S.S., Ahmed, S.B., Prakash, K. (2011). First documentation on status of barley diseases from the high altitude cold arid trans-Himalayan Ladakh region of India. Crop Prot., 30, 1129–1137. http://doi.org/10.1016/j.cropro.2011.04.015

Vargas, W.A., Sanz Martín, J.M., Rech, G.E., Rivera, L.P., Benito, E.P., Díaz-Mínguez, J.M., Thon, M.R., Sukno, S.A. (2012). Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colle-totricum graminicola in maize. Plant Physiol., 158(3), 1342–1358. https://doi.org/10.1104/pp.111.190397

Wang, Y., Ma, L., Liu, Z., Chen, J., Song, H., Wang, J., Cui, H., Yang, Z., Xiao, S., Liu, K., An, L., Chen, S. (2022). Microbial interactions play an important role in regulating the effect of plant species on soil bacterial diversity. Front. Microbiol., 13, 984200. https://doi.org/10.3389/fmicb.2022.984200

White, T.J., Bruns, T., Lee, S., Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (eds), PCR protocols: a guide to meth-ods and applications. Academic Press, New York, pp. 315–322.

Xu, X. M., Jeffries, P., Pautasso, M., Jeger, M.J. (2011). Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology, 101(9), 1024–1031. https://doi.org/10.1094/PHYTO-08-10-0216

Yi, Y., Shan, Y., Liu, S., Yang, Y., Liu, Y., Yin, Y., Hou, Z., Luan, P., Li, R. (2021). Antagonistic strain Bacillus amy-loliquefaciens XZ34-1 for controlling Bipolaris sorokiniana and promoting growth in wheat. Pathogens, 10, 1526. https://doi.org/10.3390/pathogens10111526

Yue, H.M., Wang, M., Gong, W.F., Zhang, L.Q. (2018). The screening and identification of the biological control fungi Chaetomium spp. against wheat common root rot. FEMS Microbiol. Lett., 365. https://doi.org/10.1093/femsle/fny242

Zhang, W., Li, H., Wang, L., Xie, S., Zhang, Y., Kang, R., Zhang, M., Zhang, P., Li, Y., Hu, Y., Wang, M., Chen, L., Yuan, H., Ding, S., Li, H. (2022). A novel effector, CsSp1, from Bipolaris sorokiniana, is essential for coloniza-tion in wheat and is also involved in triggering host immunity. Mol. Plant Pathol., 23, 218–236.

Download

Published
2024-07-24



Barbara Wiewióra 
The Plant Breeding and Acclimatization Institute, Radzików, Poland https://orcid.org/0000-0003-3969-6968
Grzegorz Żurek 
Plant Breeding and Acclimatization Institute – National Research Institute, Radzików, Poland https://orcid.org/0000-0003-2359-2232
Katarzyna Gleń-Karolczyk 
Department of Microbiology and Biomonitoring, University of Agriculture in Kraków, Al. Mickiewicza 21, 31-120 Kraków, Poland https://orcid.org/0000-0002-0288-559X



License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.