STUDY ON in vitro INDUCTION OF ROOTING AND CHANGES IN ENDOGENOUS HORMONE CONTENT OF Lagerstroemia indica ‘ZIJINGLING’

Feiying Huang

Central South University of Forestry and Technology, Changsha, Hunan, China 410004

Li Tang

Central South University of Forestry and Technology, Changsha, Hunan, China

Xiaoming Wang

Hunan Academy of Forestry, Changsha, Hunan, China; Hunan Key Laboratory of Tree Clonal Breeding, Changsha, Hunan, China; Changsha Engineering Technology Research Center of Woody flower, Changsha, Hunan, China

Neng Cai

Hunan Academy of Forestry, Changsha, Hunan, China; Hunan Key Laboratory of Tree Clonal Breeding, Changsha, Hunan, China; Changsha Engineering Technology Research Center of Woody flower, Changsha, Hunan, China

Zhongquan Qiao

Hunan Academy of Forestry, Changsha, Hunan, China; Hunan Key Laboratory of Tree Clonal Breeding, Changsha, Hunan, China; Changsha Engineering Technology Research Center of Woody flower, Changsha, Hunan, China


Abstract

Different media had different effects on the induction of rooting of Lagerstroemia indica ‘Zijingling’. The aims of this study were to identify the best rooting medium, determine the changes in endogenous hormone content in aseptic seedlings of ‘Zijingling’, and then analyze its role in the rooting process, to improve the rooting rate. Using a test tube seedling of ‘Zijingling’ as the experimental material, the tissue cells were observed via paraffin sectioning, and the changes in endogenous hormone content during the rooting process were determined using high-performance liquid chromatography. The results showed that 1/2 MS Medium had the most significant effect on rooting in the basic medium. The promoting effects of different auxins on rooting decreased in magnitude in the order 3-Indolebutyric acid (IBA) > Naphthalene acetic acid (NAA)> Indole-3-aceticacid (IAA). The optimal rooting medium was 1/2 MS + 0.6 mg L-1 IBA+ 15 g L-1 sucrose + 5 g L-1 agar + 200 mg L-1 activated carbon , and the highest induction rate of adventitious roots was 92.5%. The rooting of ‘Zijingling’ is classified as a primordial type of induced rooting. Exogenous IBA content promoted an increase in endogenous IAA and Gibberellic acid (GA3) contents. High contents of IAA, GA3, and Abscisic acid (ABA) and low content of Zeatin riboside (ZR) promoted the growth of adventitious roots, whereas high contents of IAA and ZR, and low contents of GA3 and ABA were required for the induction of root primordia. High levels of IAA/ZR and low levels of IAA/ABA promoted the differentiation of root primordia. However, low levels of IAA/ZR and high levels of IAA/ABA promoted adventitious root elongation.

Keywords:

culture medium, high-performance liquid chromatografy, paraffin section, rooting efficiency, tissue culture

Bai, T., Dong, Z., Zheng, X., Song, S., Jiao, J., Wang, M., Song, C. (2020). Auxin and its interaction with ethylene control adventitious root formation and development in apple rootstock. Front. Plant Sci., 11, 574881. https://doi.org/10.3389/fpls.2020.574881 DOI: https://doi.org/10.3389/fpls.2020.574881

Benková, E., Hejátko, J. (2009). Hormone interactions at the root apical meristem. Plant Mol. Biol., 69, 383. https://doi.org/10.1007/s11103-008-9393-6 DOI: https://doi.org/10.1007/s11103-008-9393-6

Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertova, D., Jurgens, G., Friml, J. (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 115(5), 591–602. https://doi.org/10.1016/s0092-8674(03)00924-3 DOI: https://doi.org/10.1016/S0092-8674(03)00924-3

Blakesley, D., Weston, G.D., Hall, J.F. (1991). The role of endogenous auxin in root initiation. Plant Growth Regul., 10(4), 341–353. https://doi.org/10.1007/bf00024593 DOI: https://doi.org/10.1007/BF00024593

Bouza, L., Sotta, B., Bonnet, M., Jacques, M., Arnaud, Y. (1992). Hormone content and meristematic activity of Paeonia sufruticosa Andr. cv. ‘Madame de Vatry’ vitroplants during in vitro rooting. Acta Hortic., 320(29), 213–216. https://doi.org/10.17660/ActaHortic.1992.320.29 DOI: https://doi.org/10.17660/ActaHortic.1992.320.29

Cai, N., Wang, X.M., Li, Y.X., Zeng, H.J., Qiao, Z.Q. (2016). Establishment of tissue culture and rapid propagation system of Lagerstroemia indica ‘Xiaoming 1’. Chinese Agric. Sci. Bull., 1, 22–27 [in Chinese]. https://doi.org/10.11924/j.issn.1000-6850.casb15100075

Chen, L.Y., Zheng, Y., Chen, L.G., Rong, J.D., Zheng, Y.S. (2011). Study on rooting culture and changes of endogenous hormone content of Rhododendron hybridum. J. For Environ, 31, 131–135 [in Chinese]. https://doi.org/10.13324/j.cnki.jfcf.2011.02.011

Chen, Y.J., Cui, Y.Y., Zhang, X.M., Deng, X.M. (2015). Tissue culture and rapid propagation of Lagerstroemia indica ‘pink Velour’. Plant Physiol. J., 51, 882–886 [in Chinese]. https://doi.org/10.13592/j.cnki.ppj.2015.0160

Corredoira, E., Costa, R.L. (2021). Application of tissue culture in plant reproduction. Forests, 12, 342. https://doi.org/10.3390/f12030342 DOI: https://doi.org/10.3390/f12030342

Das, S., Sultana, K.W., Chandra, I. (2020). In vitro micropropagation of Basilicum polystachyon (L.) Moench and identification of endogenous auxin through HPLC. Plant Cell Tissue Organ Cult., 141, 633–641. https://doi.org/10.1007/s11240-020-01824-3 DOI: https://doi.org/10.1007/s11240-020-01824-3

Díaz-Sala, C. (2021). Adventitious root formation in tree species. Plants, 10, 486. https://doi.org/10.3390/plants10030486 DOI: https://doi.org/10.3390/plants10030486

Driver, J.A., Kuniyuki, A.H. (1984). In vitro propagation of Paradox walnut rootstock. HortSci., 19, 507–509. DOI: https://doi.org/10.21273/HORTSCI.19.4.507

Duan, L.J., Li, G.R., Tong, J., Ye, Y.M. (2013). Study on rapid propagation system of Lagerstroemia indica stem segments in vitro. Acta Agric. Univ. Jiangxiensis, 35, 709–714. https://doi.org/10.13836/j.jjau.2013125

Eymar, E., Alegre, J., Toribio, M., López-Vela, D. (2000). Effect of activated charcoal and 6-benzyladenine on in vitro nitrogen uptake by Lagerstroemia indica. Plant Cell, Tissue Organ Cult., 63, 57–65. https://doi.org/10.1023/A:1006471519609 DOI: https://doi.org/10.1023/A:1006471519609

Faisal, M., Naseem, A., Mohammad, A., Abdulrahman, A.A., Ahmad, A.Q. (2017). Auxin-cytokinin synergism in vitro for producing genetically stable plants of Ruta graveolens using shoot tip meristems. Saudi J. Biol. Sci., 25(2), 273–277. https://doi.org/10.1016/j.sjbs.2017.09.009 DOI: https://doi.org/10.1016/j.sjbs.2017.09.009

Fattorini, L., Veloccia, A., Della Rovere, F., D’Angeli, S., Falasca, G., Altamura, M.M. (2017). Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity. BMC Plant Biol., 17(1), 121. https://doi.org/10.1186/s12870-017-1071-x DOI: https://doi.org/10.1186/s12870-017-1071-x

Fu, X., Harberd, N. (2003). Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature, 421, 740–743. https://doi.org/10.1038/nature01387 DOI: https://doi.org/10.1038/nature01387

Fu, Z., Xu, M., Wang, H., Wang, E., Li, Y., Wang, L., Gao, J., Zhang, J., Yuan, Xin, Zhang, H. (2021). Analysis of the transcriptome and related physiological indicators of tree peony (Paeonia suffruticosa Andr.) plantlets before and after rooting in vitro. Plant Cell Tissue Organ Cult., 147, 529–543. https://doi.org/10.1007/s11240-021-02145-9 DOI: https://doi.org/10.1007/s11240-021-02145-9

Gubler, F., Jacobsen, J.V. (1992). Gibberellin-responsive elements in the promoter of a barley high-pI alpha-amylase gene. Plant Cell, 4(11), 1435–1441. https://doi.org/10.1105/tpc.4.11.1435 DOI: https://doi.org/10.1105/tpc.4.11.1435

Guo, Y.X., Zhao, Y.Y., Zhang, M., Zhang, L.Y. (2019). Development of a novel in vitro rooting culture system for the micropropagation of highbush blueberry (Vaccinium corymbosum) seedlings. Plant Cell Tissue Organ Cult., 139, 615–620. https://doi.org/10.1007/s11240-019-01702-7 DOI: https://doi.org/10.1007/s11240-019-01702-7

Haberlandt, G. (1902). Culturversuche mit isolierten Pflanzenzellen. In: Plant tissue culture, Laimer, M., Rücker, W. (eds.). Springer, Vienna. https://doi.org/10.1007/978-3-7091-6040-4_1 DOI: https://doi.org/10.1007/978-3-7091-6040-4_1

Hartmann, H.T., Kester, D.E., Davies, F.T. (1990). Anatomical and physiological basis of propagation by cuttings. In: Plant propagation, principles and practices. Inter Edit, London, 199–225.

Huang, Q.C. (1984). Axillary bud culture of Lagerstroemia indica. Plant Physiol. J., 3, 44 [in Chinese]. https://doi.org/10.13592/j.cnki.ppj.1984.03.013

Jawahir, V., Zolman, B.K. (2021). Long chain acyl CoA synthetase 4 catalyzes the first step in peroxisomal indole-3-butyric acid to IAA conversion, Plant Physiol., 185(1), 120–136. https://doi.org/10.1093/plphys/kiaa002 DOI: https://doi.org/10.1093/plphys/kiaa002

Jiang, L., Guan, X.C. (2000). Plant hormones and adventitious root formation. Bull. Biol., 11, 17–19 [in Chinese]. https://doi.org/CNKI:SUN:SWXT.0.2000-11-009

Jiang, X.H., Song, G., Zhang, H., Cao, R., Guan, B., Liu, G. (2004). Tissue culture and rapid propagation of Lagerstroemia indica. Plant Physiol. J., 6, 707 [in Chinese]. https://doi.org/10.13592/j.cnki.ppj.2004.06.016

Joshi, M., Ginzberg, I. (2021). Adventitious root formation in crops – Potato as an example. Physiol. Plant., 172, 124–133. https://doi.org/10.1111/ppl.13305 DOI: https://doi.org/10.1111/ppl.13305

Liu, G.B., Zhao, J.Z., Zhang, Y.P., Liao, T., Guo, L.Q., Cao, J. (2020). Study on adventitious root formation mode of Platycladus orientalis cutting [J]. Acta Bot. Boreali-Occident Sin 40: 987–996 [in Chinese]. https://doi.org/10.11929/j.swfu.201806007

Li, H.H., Pan, R.C. (1993). Hormone control of adventitious rooting in mung bean stem cuttings. XV International Botanical Congress, Japan Pacifico Yokohama. 6183.

Li, X., Li, G.Z., Yang, L., Zhao, P., Ding, Y. (2020). Progress in tissue culture of the genus Vaccinium. Plant Physiol. J. 56, 921–930 [in Chinese]. https://doi.org/10.13592/j.cnki.ppj.2019.0613

Lloyd, G., McCown, B.H. (1980). Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Int. Plant Prop. Soc. Comb. Proc., 30, 421–427. Available: https://ipps.org/search-advanced/?q=Commercially feasible+micropropagation+of+mountain+laurel%2C+Kalmia+latifolia%2C+by+use+of+shoot+tip+culture&filterby=All&search=Search&submit=submit

Lohar, D.P., Schaff, J.E., Laskey, J.G., Kieber, J.J., Bilyeu, K.D., Bird, D.M. (2004). Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant J., 38, 203–214. https://doi.org/10.1111/j.1365-313X.2004.02038.x DOI: https://doi.org/10.1111/j.1365-313X.2004.02038.x

Müller, B., Sheen, J. (2008). Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature, 453, 1094–1097. https://doi.org/10.1038/nature06943 DOI: https://doi.org/10.1038/nature06943

Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Negishi, N., Nakahama, K., Urata. N., Kojima, M., Sakakibara, H., Kawaoka, A. (2014). Hormone level analysis on adventitious root formation in Eucalyptus globulus. New Forest, 45, 577–587. https://doi.org/10.1007/s11056-014-9420-1 DOI: https://doi.org/10.1007/s11056-014-9420-1

Niranjan, M.H., Sudarshana, M.S. (2005). In vitro response of encapsulated somatic embryos of Largerstroemia indica L.. Indian J. Exp. Biol., 43, 552–554.

Phillips, G.C., Garda, M. (2019). Plant tissue culture media and practices: an overview. In vitro Cell. Dev. Biol., Plant 55, 242–257. https://doi.org/10.1007/s11627-019-09983-5 DOI: https://doi.org/10.1007/s11627-019-09983-5

Qi, Y.S., Zhang, Z.H., Wang, T.K., Du, G.Q., Zhang, J.Z. (2009). Changes of endogenous hormones in adventitious root formation in soft-wood cuttings of autotetraploid Vitis vinifera L.. Acta Hortic. Sin., 36, 565–570. https://doi.org/10.16420/j.issn.0513-353x.2009.04.014

Qiao, Z.Q., Wang, X.M., Zeng, H.J., Li, Y.X., Cai, N., Wang, X.Y. (2015). Changes of endogenous hormone content in cutting of sterile Lagerstroemia indica ‘Xiangyun’. Hunan Sci. Tech., 42, 49–53. https://doi.org/10.3969/j.issn.1003-5710.2015.01.012

Rao, D.D. (2020). Tissue culture and changes of endogenous hormone content of Lagerstroemia indica New Variety ‘Ziyu’. Cent. South Univ. For. Technol., 2 [in Chinese]. https://doi.org/10.27662/d.cnki.gznlc.2020.000478

Reid, J.B., Davidson, S.E., Ross, J.J. (2011). Auxin acts independently of DELLA proteins in regulating gibberellin levels, Plant Signal. Behav., 6(3), 406–408. https://doi.org/10.4161/psb.6.3.14352 DOI: https://doi.org/10.4161/psb.6.3.14352

Růžička, K., Šimášková, M., Duclercq, J., Petrášek, J., Zažímalová, E., Simon, S., Friml, J., Montagu, M.E.V., Benková, E. (2009). Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc. Natl Acad. Sci. USA, 106(11), 4284–4289. https://doi.org/10.1073/pnas.0900060106 DOI: https://doi.org/10.1073/pnas.0900060106

Skoog, F., Miller, C.O. (1957). Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol., 11, 118–130.

Skoog, F., Tsui, C. (1948). Chemical control of growth and bud formation in tobacco stem segments and callus cultured in vitro. Am. J. Bot., 35, 782–787. https://doi.org/10.1002/j.1537-2197.1948.tb08148.x DOI: https://doi.org/10.1002/j.1537-2197.1948.tb08148.x

Song, P.F., Chen, H.J., Jiang, Y.Q., Hong, Y., Qi, X.J. (2014). Studies on the morphology and anatomy of Softwood Cutting Rooting of Vaccinium ashei Reade. J. Zhejiang Agr. Sci. 4, 505–508. https://doi.org/10.16178/j.issn.0528-9017.2014.04.029

Sousa Costa, E. Jr, Melo Barbosa, M.S. de, Silva, C.M.A. da, Silva, R.C.S. da, Kiill, L.H.P., Beckmann-Cavalcante, M.Z. (2018). Vegetative propagation of Rhaphiodon echinus Schauer (Lamiaceae): effects of the period of cutting in rooting, cuttings arrangement and IBA concentrations for seedlings production. Ornam. Hortic. 24(3), 238–247. https://doi.org/10.14295/oh.v24i3.1232 DOI: https://doi.org/10.14295/oh.v24i3.1232

Strzelecka, K. (2007). Anatomical structure and adventitious root formation in Rhododendron ponticum L. cuttings. Acta Sci. Pol. Hortorum Cultus, 6(2), 15–22. Available: https://czasopisma.up.lublin.pl/index.php/asphc/article/view/4208

Stuepp, C.A., Wendling, I., Trueman, S.J., Koehler, H.S., Zuffellato-Ribas, K.C. (2017). The use of auxin quantification for understanding clonal tree propagation. Forests, 8, 27. https://doi.org/10.3390/f8010027 DOI: https://doi.org/10.3390/f8010027

Su, Y.H., Liu, Y.B., Zhang, X.S. (2011). Auxin–cytokinin interaction regulates meristem development. Mol. Plant, 4(4), 616–625. https://doi.org/https://doi.org/10.1093/mp/ssr007 DOI: https://doi.org/10.1093/mp/ssr007

Sun, T.T., Hu, B.Z., Chen, Y.X., Fu, H.B. (2008). Anatomical study on rooting process of softwood cutting of Rosa xanthina Lindl. J. Northeast Agric. Univ., 39, 53–56. https://doi.org/10.19720/j.cnki.issn.1005-9369.2008.07.013

Teixeira da Silva, J.A., Zeng, S., Godoy-Hernández, G., Rivera-Madrid, R., Dobránszki, J. (2019). Bixa orellana L. (achiote) tissue culture: a review. In Vitro Cell. Dev. Biol. – Plant 55, 231–241. https://doi.org/10.1007/s11627-019-09969-3 DOI: https://doi.org/10.1007/s11627-019-09969-3

Van der Krieken, W.M., Breteler, H., Visser, M., Mavridou, D. (1993). The role of the conversion of IBA into IAA on root regeneration in apple: Introduction of test system. Plant Cell Rep., 12, 203–206. https://doi.org/10.1007/BF00237054 DOI: https://doi.org/10.1007/BF00237054

Werner, T., Motyka, V., Laucou, V., Smets, R., Van Onckelen, H., Schmülling, T. (2003). Cytokinin-deficient transgenic arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell, 15(11), 2532–2550. https://doi.org/10.1105/tpc.014928 DOI: https://doi.org/10.1105/tpc.014928

Yan, X., Tian, M., Liu, F., Wang, C., Zhang, Y. (2017). Hormonal and morphological changes during seed development of Cypripedium japonicum. Protoplasma, 254, 2315–2322. https://doi.org/10.1007/s00709-017-1128-6 DOI: https://doi.org/10.1007/s00709-017-1128-6

Zeng, Q.Q., Han, Z.Q., Kang, X.Y. (2019). Adventitious shoot regeneration from leaf, petiole and root explants in triploid (Populus alba × P. glandulosa) × P. tomentosa. Plant Cell Tissue Organ Cult., 138, 121–130. https://doi.org/10.1007/s11240-019-01608-4 DOI: https://doi.org/10.1007/s11240-019-01608-4

Zhang, Q., Luo, F., Liu, L., Guo, F.C. (2010). In vitro induction of tetraploids in crape myrtle (Lagerstroemia indica L.). Plant Cell Tissue Organ Cult., 101, 41–47. https://doi.org/10.1007/s11240-009-9660-5 DOI: https://doi.org/10.1007/s11240-009-9660-5

Zheng, J.B., Liu, Y.J., Pei, B.H., Qiang, X.N. (1991). The relationship between rooting and rooting of several woody plants and endogenous IAA and ABA. Physiol. Mol. Biol. Plants, 3, 313–316.

Zhou, J., Zhang, L.J. (2010). Changes of endogenous hormone content in tissue culture seedlings of Hippophae rhamnoides L. J. Anhui Agric. Sci., 38(17). https://doi.org/10.13989/j.cnki.0517-6611.2010.17.118

Zhou, X.M., Liu, Y.T., Zhao, X.Z., Song, Z.W., Wang, S. (2016). Rooting anatomy of hardwood cutting for Albizia julibrissin Duraxx. and activity change of related enzymes during rooting process. Bull. Bot. Res., 36, 58–61. https://doi.org/10.7525/j.issn.1673-5102.2016.01.008

Download

Published
2022-06-30



Feiying Huang 
Central South University of Forestry and Technology, Changsha, Hunan, China 410004
Li Tang 
Central South University of Forestry and Technology, Changsha, Hunan, China
Xiaoming Wang 
Hunan Academy of Forestry, Changsha, Hunan, China; Hunan Key Laboratory of Tree Clonal Breeding, Changsha, Hunan, China; Changsha Engineering Technology Research Center of Woody flower, Changsha, Hunan, China
Neng Cai 
Hunan Academy of Forestry, Changsha, Hunan, China; Hunan Key Laboratory of Tree Clonal Breeding, Changsha, Hunan, China; Changsha Engineering Technology Research Center of Woody flower, Changsha, Hunan, China
Zhongquan Qiao 
Hunan Academy of Forestry, Changsha, Hunan, China; Hunan Key Laboratory of Tree Clonal Breeding, Changsha, Hunan, China; Changsha Engineering Technology Research Center of Woody flower, Changsha, Hunan, China



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.